Navegando por Autor "Barbosa, Brenon Diennevan Souza"
Agora exibindo 1 - 2 de 2
- Resultados por Página
- Opções de Ordenação
Item Technical and economic viability of manual harvesting coffee yield maps(Editora UFLA, 2020) Faria, Rafael de Oliveira; Silva, Fábio Moreira; Ferraz, Gabriel Araújo e Silva; Herrera, Miguel Angel Diaz; Barbosa, Brenon Diennevan Souza; Alonso, Diego José Carvalho; Soares, Daniel VeigaPrecision coffee growing is a concept that implies the use of precision agriculture techniques in coffee plantations. For the coffee growing, the precision electronic resources coupled to the harvesters are very scarce. Thereby, the harvest of coffee plantations that compose the grid sampling for generation of thematic maps can be performed manually. The aim of the present study was to generate a linear regression model to estimate the time required to harvest, estimate the labor costs to harvest manually the georeferenced sample points for generation of coffee yield maps. The study was performed in a coffee area of 56 hectares using two sampling points per hectare, totaling 112 points, being evaluated four coffee plants for each point. The manual harvest of the points was performed by four rural workers with experience in the coffee harvest. Afterwards, the collected volume was measured by a graduated container and the times were obtained by the digital stopwatch. Based on the data obtained in the field, a linear correlation model was established between the harvest time of each sampling point and the yield of the point, whose R² value was 78.27, cost was R$ 8.92 per point. These results are relevant for estimating the amount of labor force required to generate manually harvest yield maps according to the producer’s coffee yield estimate, contributing to the closure of the precision coffee growing cycle.Item Treinamento de algoritmo para identificação de mudas de café por meio de imagens aéreas(Embrapa Café, 2019-10) Santana, Lucas Santos; Santos, Gabriel Henrique Ribeiro dos; Ferraz, Gabriel Araújo e Silva; Santos, Luana Mendes dos; Barbosa, Brenon Diennevan Souza; Bento, Nicole LopesAplicação de sistemas computacionais na agricultura vem se tornando necessidade, para incrementos de produtividade. A cafeicultura é considerada um dos mais importantes ramos do agronegócio brasileiro, mas alguns pontos ainda podem ser melhorados. A contagem de mudas de café é feita manualmente a campo, considerada uma técnica que apresenta baixa agilidade principalmente em grandes plantações, causando perda de tempo e desconforto à pessoa encarregada por este trabalho. A utilização de tecnologias avançadas no campo surge no contexto da agricultura de precisão. Esta pesquisa tem como intuito apresentar treinamento de um algoritmo para contagem automática de mudas de cafeeiros a partir de imagens obtidas por veículo aéreo não tripulado (VANT). O algoritmo desenvolvido é baseado numa rede neural artificial do tipo convolucional (RNC). A pesquisa foi realizada em uma área experimental de café em 2 estágios 3 e 6 totalizando 0,4 hectares no município de Bom Sucesso MG. Para a coleta das imagens foi utilizado um veículo aéreo não tripulado (VANT) modelo phanton 4, com capacidade de coletar imagens na composição Red Blue e Green (RGB). Os voos foram feitos com 30 metros de altura, velocidade de 3 m/s, sobreposição frontal e lateral de 80%. Para a criação do ortomosaico as imagens foram processadas no software Agisoft Photoscan e posteriormente tratadas no software Arcgis 10.2. Em seguida foi submetido a fase de treinamento, para a detecção automática das mudas no ortomosaico. Primeiramente foi necessário a criação de um banco de dados, com a finalidade de treinar e validar a rede neural YOLO (You Only Look Once). Após o treinamento foi utilizada a técnica de usar pequenos recortes de uma imagem se chama janelamento, na qual foram realizados 762 recortes. As imagens usadas para o treino da rede neural são distintas das imagens usadas para validação para assim o software demostrar o aprendizado. Os resultados apresentados em plantas de 3 meses não foram satisfatórios, pois ocorreu confusão na identificação entre mudas e plantas daninhas e sombras. Nas imagens de 6 meses foi observado melhor desempenho na identificação por meio de treinamento de algoritmos. A partir do treinamento de algoritmo por meio de aprendizado foi possível detectar mudas de cafeeiros a campo. Portanto para um refinamento e maior precisão do algoritmo é necessário o treinamento em diversas áreas e cultivares diferentes.