Navegando por Autor "Brighenti, Carla Regina Guimarães"
Agora exibindo 1 - 3 de 3
- Resultados por Página
- Opções de Ordenação
Item Analysis of defects in coffee beans compared to biplots for simultaneous tables(Universidade Federal do Ceará, 2018-01) Brighenti, Carla Regina Guimarães; Cirillo, Marcelo AngeloThe demand for high quality coffee has become a consolidated criterion to achieve the best prices. Currently, cooperatives evaluate the coffee beans mainly through the particle size and the number of defects in the sample. This evaluation type generates counting data that originates contingency tables from different periods or groups involving the same variables in the row and column and there may be interest in knowing if two tables are related and how much are related. These are the so-called combined tables. Statistical analysis techniques normally employed do not include categorical data in the combined tables. The aim of this study was to evaluate the incidence of different types of defects in samples of large flat coffee beans in two different harvests through the construction of biplots. The decomposition theory in single simultaneous values of double entry contingency tables was used. The results of defect counting in beans of 24 coffee samples from southern Minas Gerais, Brazil, were evaluated in the 2014 and 2015 harvests. Moreover, the association among defect types, considered within different total defect proportions in the sample, was verified based on the percentage in 17/18 sieves. It was also evaluated the relative sums of squares from the similarity and dissimilarity among the harvests. It is concluded that the simultaneous analysis technique allows better visualizing the common behavior and alterations among different harvests, distinguishing the defect types associated with each harvest and among different proportions of large flat beans.Item Bayesian sequential procedure to estimate the viability of seeds Coffea arabica L. in tetrazolium test(Escola Superior de Agricultura "Luiz de Queiroz", 2019-05) Brighenti, Carla Regina Guimarães; Cirillo, Marcelo Ângelo; Costa, André Luís Alves; Rosa, Sttela Dellyzete Veiga Franco da; Guimarães, Renato MendesTetrazolium tests use conventional sampling techniques in which a sample has a o Zootecnia, Av. Visconde do Rio Preto, s/n — 36301-360 — fixed size. These tests may be improved by sequential sampling, which does not work with fixed- s São João Del-Rei, MG — Brasil. size samples. When data obtained from an experiment are analyzed sequentially the analysis can OM 2Universidade Federal de Lavras -— Depto. de Estatística, C.P. be terminated when a particular decision has been made, and thus, there is no need to pre-es- "O 3037 - 37200-000 - Lavras, MG - Brasil. tablish the number of seeds to assess. Bayesian statistics can also help, if we have sufficient = Embrapa Café, PqEB, s/n - 70770-901 - Brasília, DF — knowledge about coffee production in the area to construct a prior distribution. Therefore, we Brasil. used the Bayesian sequential approach to estimate the percentage of viable coffee seeds sub- os “Universidade Federal de Lavras — Depto. de Agricultura. mitted to tetrazolium testing, and we incorporated priors with information from other analyses — *Corresponding author of crops from previous years. We used the Beta prior distribution and, using data obtained from Ss sample lots of Coffea arabica, determined its hyperparameters with a histogram and O'Hagan's O Edited by: Marcin Kozak methods. To estimate the lowest risk, we computed the Bayes risks, which provided us with a = basis for deciding whether or not we should continue the sampling process. The results confirm e Received April 13, 2017 that the Bayesian sequential estimation can indeed be used for the tetrazolium test: the average Fi; Accepted January 06, 2018 percentage of viability obtained with the conventional frequentist method was 88 %, whereas that v obtained with the Bayesian method with both priors was 89 %. However, the Bayesian method E required, on average, only 89 samples to reach this value while the traditional estimation method O needed as many as 200 samples.Item Componentes de efeitos de safras representados em biplots corrigidos por predições de modelos GEE na classificação granulométrica de cafés(Universidade Federal de Lavras, 2019-02-19) Ferreira, Haiany Aparecida; Cirillo, Marcelo Ângelo; Brighenti, Carla Regina GuimarãesEm uma análise granulométrica de cafés com diferentes categorias de defeitos, os dados podem ser organizados em tabelas de contingências e, ao considerar a discriminação por safra, as mesmas poderão ter uma estrutura que sugere um modelo mais complexo, no tocante, à interação das classificações de defeitos e porcentagens dos grãos de peneiras com efeitos de safra. Diante do exposto, surge a hipótese de que estruturas de correlação são viáveis de serem incorporadas em um modelo, a fim de aprimorar análises gráficas multidimensionais, como a técnica biplots. Com essa motivação, este trabalho tem por objetivo propor o uso de biplots corrigidos por predições de modelos GEE na classificação granulométrica de cafés, discriminada por componentes do efeito das safras. Para validação da proposta, realizações Monte Carlo foram feitas em diferentes estruturas de tabela de contingência em cenários com diferentes graus de correlação. Concluiu-se que o uso de modelos GEE com a técnica biplot corrigida pelas predições é viável de aplicação na análise granulométrica de grãos defeituosos de cafés, com uma eficiente discriminação dos efeitos de safras.