Navegando por Autor "Oliveira, Lílian Maria de"
Agora exibindo 1 - 1 de 1
- Resultados por Página
- Opções de Ordenação
Item Classificação de dados sensoriais de cafés especiais com resposta multiclasse via Algoritmo Boosting e Bagging(Universidade Federal de Lavras, 2016-02-25) Oliveira, Lílian Maria de; Menezes, Fortunato Silva deOs métodos automáticos de classificação têm sido desenvolvidos na área de Aprendizado de Máquina com o intuito de facilitar a categorização de dados. Dentre os métodos mais bem sucedidos destacam-se o Boosting e o Bagging. O Bagging funciona combinando classificadores ajustados em amostras bootstrap dos dados e o Boosting funciona aplicando-se sequencialmente um algoritmo de classificação a versões reponderadas do conjunto de dados de treinamento, dando maior peso às observações classificadas erroneamente no passo anterior. Esses classificadores se caracterizam por produzirem resultados satisfatórios, baixo custo computacional e vantagem da simplicidade de implementação. Dadas essas características, surge um interesse em verificar o desempenho desses métodos automáticos comparados com os métodos clássicos de classificação existentes na Estatística, a Análise Discriminante Linear e Quadrática. Com o propósito de comparar essas técnicas, utilizou-se as taxas de erro de classificação dos modelos. Para melhorar a confiança da utilização dos métodos Boosting e Bagging em problemas mais complexos de classificação, um estudo foi realizado aplicando essas técnicas em dados reais e simulados que eram compostos por mais que duas categorias na variável resposta. Nesta dissertação, para estimular a implementação do Boosting e Bagging, realizou-se uma aplicação na Análise Sensorial. Concluiu-se que os métodos automáticos tiverem um bom desempenho de classificação, proporcionando taxas de erro menores que as Análises Discriminante Linear e Quadrática nas aplicações testadas.