Navegando por Autor "Pereira, Gislene Araújo"
Agora exibindo 1 - 1 de 1
- Resultados por Página
- Opções de Ordenação
Item Estimadores Ridge generalizados adaptados em modelos de equações estruturais : estudo de simulação e aplicação no perfil de consumidores de café(Universidade Federal de Lavras, 2014-07-31) Pereira, Gislene Araújo; Cirillo, Marcelo ÂngeloA modelagem de equações estruturais (SEM-Structural Equation Modeling) é uma metodologia multivariada que permite incorporar variáveis que não podem ser medidas diretamente, mas podem ser representadas ou medidas por variáveis observáveis; e, também, analisar, simultaneamente, várias relações de causa e efeito entre um conjunto de variáveis. Na realização de uma modelagem estatística, é comum se deparar com variáveis multicolineares, as quais requerem um tratamento específico, com a implementação de métodos alternativos, sendo o método ridge o mais usual. A presença de multicolinearidade entre as variáveis, poderá ocasionar o problema da singularidade numérica envolvida no cálculo das matrizes inversas presentes nos métodos de estimação. A multicolinearidade é detectada em modelos de regressão, nos quais as variáveis independentes são for- temente correlacionadas. Dado o fato de que um modelo SEM envolve relações lineares, em inúmeras aplicações onde a SEM é indicada, , naturalmente, depara- se com esse problema. Diante disso, este trabalho foi realizado com o objetivo de adaptar os estimadores ridge generalizados à SEM, com a proposta de aplicar os modelos estruturais adaptados à descrição do perfil de um grupo de consumidores de café. Com este propósito, um estudo de simulação Monte Carlo foi realizado considerando diferentes tamanhos amostrais e diferentes graus de multicolinearidade. Também, foi analisado o comportamento dos estimadores ridge generalizados, no estudo da descrição do perfil de um grupo de consumidores de café. Concluiu-se que, diante da presença de variáveis observadas multicolinearidade, independente do tamanho amostral ou do grau de multicolinearidade, os estimadores ridge generalizados apresentaram EQM menores do que o tradicional estimador de mínimos quadrados ordinários. Mesmo apresentando a vantagem de resultarem EQM relativamente menores que o estimador de mínimos quadrados ordinários, os estimadores ridge generalizado foram na maioria dos casos analisa- dos, responsáveis pelos maiores vieses. Entretanto, observou-se que quanto maior o tamanho amostral e o grau de multicolinearidade, mais os vieses dos estima- dores ridge generalizados se aproximavam dos vieses empíricos do estimados de mínimos quadrados ordinários. No estudo da descrição de perfil de um grupo de consumidores de café, os estimadores ridge generalizados, também, mostraram-se igualmente eficientes na redução do EQM. Sendo assim, pode-se concluir que os estimadores ridge generalizados foram adaptados com sucesso à modelagem de equações estruturais.