Navegando por Autor "Reis, Leandro Vilela"
Agora exibindo 1 - 3 de 3
- Resultados por Página
- Opções de Ordenação
Item Magnetic field in coffee seed germination(Editora UFLA, 2020-07-13) Braga Júnior, Roberto Alves; Azevedo, Roberto Luiz de; Guimarães, Renato Mendes; Reis, Leandro VilelaThe effective production of coffee seedlings faces many challenges, including seed germination. Therefore, a reduced seed germination period can be one of the most relevant contributions to enhance the testing and production of robust seedlings. The objective of this research was to evaluate the effects of a constant magnetic field on the germination of coffee seeds (Coffea arabica L.). The analyses were performed using a biospeckle laser (BSL) in conjunction with traditional seed viability tests. The coffee seeds were subjected to magnetic fields of constant intensity at values of 10 mT and 28 mT for a time interval of 6 days during their germination process. The embryo region was illuminated, and the images obtained by the BSL were processed. The activity levels of this region were compared with the data obtained using traditional physiological seed analysis. In addition to the results of BSL activity, the results of the seed analysis, such as isoenzymatic catalase (CAT), esterase (EST), superoxide dismutase (SOD), malate dehydrogenase (MDH) and endo-β-mananase, membrane integrity, germination, germination speed index (GSI), emergence speed index (ESI), and radicular protrusion levels, were obtained during the germination process. In conclusion, magnetic pretreatment with both intensities during the first six days of germination improved the permeability of the cellular membranes and advanced the activation of the antioxidant system, thus promoting faster and more uniform seed germination.Item Magnetic field in coffee seed germination(Editora UFLA, 2020) Braga Júnior, Roberto Alves; Azevedo, Roberto Luiz de; Guimarães, Renato Mendes; Reis, Leandro VilelaThe effective production of coffee seedlings faces many challenges, including seed germination. Therefore, a reduced seed germination period can be one of the most relevant contributions to enhance the testing and production of robust seedlings. The objective of this research was to evaluate the effects of a constant magnetic field on the germination of coffee seeds (Coffea arabica L.). The analyses were performed using a biospeckle laser (BSL) in conjunction with traditional seed viability tests. The coffee seeds were subjected to magnetic fields of constant intensity at values of 10 mT and 28 mT for a time interval of 6 days during their germination process. The embryo region was illuminated, and the images obtained by the BSL were processed. The activity levels of this region were compared with the data obtained using traditional physiological seed analysis. In addition to the results of BSL activity, the results of the seed analysis, such as isoenzymatic catalase (CAT), esterase (EST), superoxide dismutase (SOD), malate dehydrogenase (MDH) and endo-β-mananase, membrane integrity, germination, germination speed index (GSI), emergence speed index (ESI), and radicular protrusion levels, were obtained during the germination process. In conclusion, magnetic pretreatment with both intensities during the first six days of germination improved the permeability of the cellular membranes and advanced the activation of the antioxidant system, thus promoting faster and more uniform seed germination.Item Tolerance of Coffea arabica L. seeds to sub zero temperatures(Editora UFLA, 2017-05) Coelho, Stefania Vilas Boas; Rosa, Sttela Dellyzete Veiga Franco da; Clemente, Aline da Consolação Sampaio; Pereira, Cristiane Carvalho; Figueiredo, Madeleine Alves de; Reis, Leandro VilelaPreservation of the quality of coffee seeds is hindered by their intermediate behavior in storage. However, long-term storage at sub zero temperatures may be achieved by adjusting the water content of the seeds. The aim of this study was to evaluate the tolerance of coffee seeds to freezing, in relation to physiological and enzymatic modifications. Coffee seeds were dried in two manners, rapid and slow, to water contents of interest, 0.67, 0.43, 0.25, 0.18, 0.11, and 0.05 g H2O g-1 dw (dry basis). After drying, the seeds were stored at a temperature of -20 oC and of 86 oC for 24 hours and for 12 months, and then compared to seeds in cold storage at 10 oC. The seeds were evaluated through calculation of percentage of normal seedlings, percentage of seedlings with expanded cotyledonary leaves, dry matter of roots and of hypocotyls, and viability of embryos in the tetrazolium test. Expression of the enzymes superoxide dismutase, catalase, and peroxidase were evaluated by means of electrophoretic analysis. Only seeds dried more slowly to 0.18 g H2O g-1 dw present relative tolerance to storing at -20 °C for 12 months. Coffee seeds do not tolerate storage at a temperature of -86 oC for 12 months. Water contents below 0.11g H2O g-1 dw and above 0.43 g H2O g-1 dw hurt the physiological quality of coffee seeds, regardless of the type of drying, temperature, and storage period. Coffee seed embryos are more tolerant to desiccation and to freezing compared to whole seeds, especially when the seeds are dried to 0.05 g H2O g-1 dw. The catalase enzyme can be used as a biochemical marker to study tolerance to freezing in coffee seeds.