Navegando por Autor "Ribeiro, Cléberson"
Agora exibindo 1 - 1 de 1
- Resultados por Página
- Opções de Ordenação
Item Nitrogen metabolism in coffee plants subjected to water deficit and nitrate doses(Instituto de Tecnologia do Paraná - Tecpar, 2023-03-24) Rocha, Brunno César Pereira; Martinez, Hermínia Emília Prieto; Ribeiro, Cléberson; Brito, Danielle SantosNitrogen uptake is essential for coffee growth and development, resulting in important effects on the biomass and final crop yield. Thus, like most nutrients, nitrogen is absorbed by the roots using water as a mean of transport, so that water stress and nitrogen can directly and indirectly affect various physiological processes. The aim of this paper was to evaluate the nitrogen metabolism in young plants of four varieties of coffee trees (Coffea arabica L.) submitted to water deficit (WD) and nitrogen supply. We have done a triple factorial (2 x 4 x 4) experiment entirely randomized. The plots received combinations of high or low N doses (7mmol/L and 2.8 mmol/L NO3 -), four water potentials (0; -0.4; -0.8; and -1.6 Mpa), and four varieties (Mundo Novo IAC379-19, Acauã F6 of IBC - PR 82010, Catuaí Vermelho IAC 44, and Catuaí Amarelo IAC 62). One hundred and forty days after the I of the experiment (140 days after the beginning of N stress and 82 days after the beginning of WD stress) the activity of the enzymes nitrate reductase (NR) and glutamine synthetase (GS), concentration of nitrate, free proline, amino acids (TAA), and total proteins were determined in samples of leaf and root tissues. There were differences between varieties independently of WD and N dose for leaf NR, being ‘Acauã’ the cultivar that presented the highest and ‘Catuaí Vermelho’ the lowest value to this trait. The WD promoted an increase on the proline concentration in the roots. With low N dose, the activity of GS presented linear increases in response to WD. It was concluded that in young coffee plants under WD, proline can be involved in the osmotic adjustment, having its synthesis in the roots increased. Under WD, plants with good nitrogen nutrition presented larger leaf concentration of soluble amino acids and total soluble proteins. The varieties studied do not present differentiated responses to WD.