Navegando por Autor "Silveira, Lucas Silva da"
Agora exibindo 1 - 2 de 2
- Resultados por Página
- Opções de Ordenação
Item Estudos de casos de classificação de áreas cultivadas com café por meio de descritores de textura(Editora UFLA, 2016-10) Silveira, Lucas Silva da; Valente, Domingos Sárvio Magalhães; Pinto, Francisco de Assis Carvalho; Santos, Fábio LúcioO objetivo neste trabalho foi desenvolver um sistema para identificar áreas cultivadas com café utilizando Redes Neurais Artificiais (RNAs) tendo como variáveis de entrada os descritores de textura de Haralick. Utilizou-se o algoritmo de treinamento do tipo retro-propagação do erro (backpropagation) e o método de Levenberg-Marquardt. Foram realizados dois estudos de casos: no primeiro, as RNAs foram desenvolvidas para discriminar entre as classes café, mata, água, solo exposto, pastagem e área urbana; no segundo, as RNAs foram desenvolvidas para classificar as plantações de café de acordo com a idade e com a data de recepa. Para a avaliação do desempenho de classificação das RNAs empregou-se um mapa de referência de uso e ocupação do solo elaborado por meio do Sistema de Informações Geográficas. A concordância entre os mapas temáticos, classificados pela RNA, e o mapa de referência foi avaliada pelo coeficiente Kappa. Verificou-se que o coeficiente Kappa para discriminar a região cafeeira das outras classes temáticas foi de 0,652 no primeiro estudo de caso, desempenho considerado muito bom. Para classificar os plantios de café em função da idade e data de recepa o índice Kappa foi variável (0,675 a 0,4783), sendo considerado muito bom para a fazenda Itatiaia e razoável para a fazenda Pedra Redonda.Item Identificação de áreas cultivadas com café por meio de descritores texturais(Universidade Federal de Viçosa, 2013-07-19) Silveira, Lucas Silva da; Pinto, Francisco de Assis de CarvalhoA importância da cafeicultura para o Brasil é notória, em especial para o estado de Minas Gerais que é o estado brasileiro responsável pela maior parte da produção nacional. Nas regiões sul e da zona da mata onde estão concentradas a maior parte da lavoura no estado de Minas Gerias, há a predominância de pequenas propriedades e o cultivo é feito em região de montanha o que acaba dificultando o mapeamento por métodos automatizados. A aplicação de Redes Neurais Artificiais (RNAs) tendo como variáveis de entrada os descritores de Haralick tem se mostrado uma abordagem promissora na discriminação de classes de maior complexidade. Neste contexto objetivou-se desenvolver um sistema para identificar áreas cultivadas com café utilizando RNAs tendo como variáveis de entrada os descritores de Haralick. A área de estudo está localizada no município de Araponga, onde foram selecionados 59 talhões com plantios de café, sendo levantados dados relativos à idade e data de recepa. O software utilizado para o processamento e classificação da imagem foi o MATLAB, e para avaliar o desempenho da classificação foi o Arcgis. A metodologia para o desenvolvimento da RNA consistiu em duas etapas: na primeira a RNA foi treinada com amostras representativas de cada classe de interesse (café, mata, água, solo exposto e pastagem e área urbana), verificando assim o potencial em discriminar entre as classes de saída; na segunda etapa o objetivo foi classificar as plantações de café de acordo com a idade e com a data de recepa. Utilizou-se o índice Kappa para avaliar o desempenho da RNA, uma vez que o uso desse coeficiente é satisfatório na avaliação da precisão de uma classe temática. O índice Kappa para discriminar a região cafeeira das outras classes temáticas foi de 65,18%, o que pode ser considerado um índice bom. Para classificar os plantios de café em função da idade e data de recepa o índice Kappa foi variável (0,675 a 0,4783), sendo considerado muito bom para a fazenda Itatiaia e razoável para a fazenda Pedra Redonda.