Journal of the Brazilian Chemical Society
URI permanente para esta coleçãohttps://thoth.dti.ufv.br/handle/123456789/13322
Navegar
5 resultados
Resultados da Pesquisa
Item Ambient mass spectrometry employed for direct analysis of intact arabica coffee beans(Sociedade Brasileira de Química, 2014) Garrett, Rafael; Schwab, Nicolas V.; Cabral, Elaine C.; Henrique, Brenno V. M.; Ifa, Demian R.; Eberlin, Marcos N.; Rezende, Claudia M.The ambient ionization mass spectrometry techniques: desorption electrospray ionization (DESI) and easy ambient sonic-spray ionization (EASI) were explored as fast and simple ways to directly analyze the surface of intact green Arabica coffee beans treated by the dry, semi-dry and wet post-harvest methods. Five compounds were identified, including three components of the waxy layer that covers the green coffee beans (β N-arachinoyl-5-hydroxytryptamide, β N-behenoyl5-hydroxytryptamide, and β N-lignoceroyl-5-hydroxytryptamide) and that are commonly related to related to stomach irritations caused by coffee beverage consumption in sensitive people. Moreover, the multivariate statistical tool principal component analysis (PCA) was employed to differentiate the coffee post-harvest methods using data from the mass spectrometry fingerprinting analyses. Extraction procedures or sample pretreatment steps were not required for DESI and EASI analyses and the results obtained suggest therefore that these techniques could be used for rapid quality control and certification processes of coffees samples.Item Discrimination of commercial roasted and ground coffees according to chemical composition(Sociedade Brasileira de Química, 2012) Souza, Romilaine M. N. de; Benassi, Marta T.Roasted and ground 38 commercial coffees and coffees of known species (arabica, robusta) were characterized by principal component analysis using as variables nicotinic acid, trigonelline, 5-o-caffeoylquinic acid (5-CQA), caffeine, kahweol and cafestol, which are potentially indicative of species. The objective of the study was to assess the relevance of such parameters in coffee discrimination. Nicotinic acid allowed the characterization of roasting degree. Trigonelline and 5-CQA presented variability among arabica and robusta coffees as well as among comercial ones. Thermostable parameters (caffeine, kahweol and cafestol) had high discriminative potential between the species. In general, high levels of caffeine and low levels of diterpenes (kahweol and cafestol) were related with higher proportions of robusta in the products, which were observed by the decreasing kahweol/cafestol ratio and increasing caffeine/kahweol ratio. The use of these new parameters (kahweol/cafestol and caffeine/kahweol ratios) was suggested as tools for assessing the addition of robusta in commercial coffees.Item Green and roasted arabica coffees differentiated by ripeness, process and cup quality via electrospray ionization mass spectrometry fingerprinting(Sociedade Brasileira de Química, 2009) Amorim, Ana Carolina L.; Hovell, Ana Maria C.; Pinto, Angelo C.; Eberlin, Marcos N.; Arruda, Neusa P.; Pereira, Elenilda J.; Bizzo, Humberto R.; Catharino, Rodrigo R.; Morais Filho, Zenildo B.; Rezende, Claudia M.Direct infusion electrospray ionization mass spectrometry in both the negative ESI(-)-MS and positive ESI(+)-MS ion modes are investigated to differentiate green and roasted Arabica coffees with different stages of ripeness (green, ripe and overripe), post-harvesting process (dry, wet and semi-wet) and coffees with diferente cup qualities. In the ESI(-)-MS of green coffees, ions from deprotonated fatty acids and chlorogenic acids are the most important for ripeness discrimination. In the ESI(+)-MS, maturity is differentiated by ions from protonated caffeine, chlorogenic acids and K+ adducts of fatty acids. To differentiate between post-harvesting process in both ionization modes, ions from fatty acids, chlorogenic acids, sugars and carboxylic acids generated in the fermentation process are the most representative. Roasted Arabica coffees are also well discriminated: in the ESI(-)-MS, ions from chlorogenic acids and short-chain organic acids derived from sugars are important. In the ESI(+)-MS, discrimination are mainly performed by low m/z ions such as protonated pyridine and alkylpiridines formed via trigonelline degradation. Both ESI(+)-MS and ESI(-)-MS are able to differentiate cup quality for Arabica roasted coffees and the ions used to perform discrimination are the same ones described in ripeness and post-harvesting processes.Item The use of fatty acid profile as a potential marker for brazilian coffee (Coffea arabica L.) for corn adulteration(Sociedade Brasileira de Química, 2008) Jham, Gulab N.; Berhow, Mark A.; Manthey, Linda K.; Palmquist, Deborah A.; Vaughn, Steven F.Fatty acid methyl ester (FAME) composition of the coffee (Coffea arabica L.) varieties Catuai, Catucaí, Bourbom, Mundo Novo, Rubí and Topázio known to produce beverage of intermediate, excellent, excellent, intermediate, intermediate and poor quality, respectively, was determined for the first time. Average area % of the FAMEs of the six varieties was: palmitic (38.2), stearic (8.3), oleic (8.6), linoleic (38.5), linolenic (1.6) and arachidic (3.6) acids, respectively. The method was very quick with complete characterization (>99%) of the samples studied being possible in less than 6 min. While these values may provide insights for evaluating the coffee quality, no significant effect (p < 0.05) of coffee variety was found on area % of the FAMEs. In addition, FAMEs of six corn samples, six commercial coffee brands and one commercial coffee sample intentionally contaminated with three levels of corn were compared. Although the linoleic/stearic ratio was significantly different in coffee and corn FAMEs, this probe could not be used a marker to detect corn adulteration in commercial coffees.Item Differential scanning calorimetry and infrared spectroscopy combined with chemometric analysis to the determination of coffee adulteration by corn(Sociedade Brasileira de Química, 2017) Brondi, Ariadne M.; Torres, Claudia; Garcia, Jerusa S.; Trevisan, Marcello G.Roasted and ground coffee is targeted by fraudulent addiction of products. In this way the determination of contaminants in coffee has economic and nutritional importance. In this study, the coffee adulteration by corn were detected using DSC (differential scanning calorimetry) and FTIR (Fourier transform infrared spectroscopy) coupled to PCA (principal component analysis), and PLS (partial least squares) models. Three different levels of roasted and ground Coffea arabica L. were used to prepare mixtures with roasted and ground corn. The level of adulteration used was between 0.5 to 40% (m/m). It was observed that both DSC and FTIR coupled with PCA are able to discriminate adulterated from unadulterated samples of coffee by corn at levels below 1%. PLS models were built with DSC and FTIR data reaching good correlation between the values of estimated and reference concentrations, with RMSECV (root mean square error of cross-validation) lower than 3.5% for DSC data and 2.7% for FTIR data.