Química Nova

URI permanente para esta coleçãohttps://thoth.dti.ufv.br/handle/123456789/13323

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 4 de 4
  • Imagem de Miniatura
    Item
    Teores de trigonelina, ácido 5-cafeoilquínico, cafeína e melanoidinas em cafés solúveis comerciais brasileiros
    (Sociedade Brasileira de Química, 2013) Marcucci, Carolina Tolentino; Benassi, Marta de Toledo; Almeida, Mariana Bortholazzi; Nixdorf, Suzana Lucy
    Commercial Brazilian regular and decaffeinated instant coffees (33 brands) were studied. The levels ranged from 0.47 to 2.15 g 100 g-1 for trigonelline, 0.38 to 2.66 g 100 g-1 for 5-caffeoylquinic acid (5-CQA), 0.24 to 4.08 g 100 g-1 for caffeine, and 0.253 to 0.476 (420 nm) for melanoidins. Variations in bioactive compound levels among batches were observed. There was no relationship between the drying process and the composition of the products. In general, Gourmet and decaffeinated coffees had higher trigonelline and 5-CQA but lower caffeine and melanoidin content than regular products.
  • Imagem de Miniatura
    Item
    Teores de compostos bioativos em cafés torrados e moídos comerciais
    (Sociedade Brasileira de Química, 2010) Souza, Romilaine Mansano Nicolau de; Canuto, Gisele André Baptista; Dias, Rafael Carlos Eloy; Benassi, Marta de Toledo
    The amounts of nicotinic acid, trigonelline, 5-CQA, caffeine, kahweol and cafestol in 38 commercial roasted coffees ranged from 0.02 to 0.04; 0.22 to 0.96; 0.14 to 1.20; 1.00 to 2.02; 0.10 to 0.80 and 0.25 to 0.55 g/100 g, respectively. Evaluation of color and content of thermo-labile compounds indicated similarity in roasting degree. Differences in the levels of diterpenes and caffeine, components less influenced by the roasting degree, could be mainly explained by the species used (arabica and robusta). Gourmet coffees showed high concentrations of diterpenes, trigonelline and 5-CQA and low levels of caffeine, indicating high proportion of arabica coffee.
  • Imagem de Miniatura
    Item
    Saponificação assistida por micro-ondas na extração de diterpenos em café arábica torrado
    (Sociedade Brasileira de Química, 2017) Bianchin, Mirelli; Yamashita, Fabio; Benassi, Marta de Toledo
    The extraction of kahweol and cafestol involves saponification reaction. This step is important for the efficiency of the extraction as the diterpenes are susceptible to structural changes during hydrolysis. The microwave-assisted saponification has been successfully used in different matrices, but there is no previous report of the use of this technique in the saponification of diterpenes. Therefore, the effect of microwave-assisted saponification on the extraction of kahweol and cafestol in roasted coffee was evaluated. A 32 factorial experimental design was used in order to evaluate the effect of temperature (70, 80, and 90 ºC) and reaction time (4, 8, and 12 min). The quantification of diterpenes was performed by high-performance liquid chromatography and the results were compared to with those obtained by a method, which uses thermostatic bath for saponification. Temperature and time had a significant effect (p < 0.05) on diterpenes levels. For simultaneous saponification of kahweol and cafestol, the optimal reaction conditions were 80 ºC / 12 min. The use of microwave-assisted procedure lead to lower yields of kahweol (24%) and cafestol (35%) compared to reference method. However a significant reduction of reaction time (80%) was achieved, and the procedure also has the advantage of controlled process conditions and the possibility of extended scale.
  • Imagem de Miniatura
    Item
    Metodologia para análise simultânea de ácido nicotínico, trigonelina, ácido clorogênico e cafeína em café torrado por cromatografia líquida de alta eficiência
    (Sociedade Brasileira de Química, 2006) Alves, Sandriel Trindade; Dias, Rafael Carlos Eloy; Benassi, Marta de Toledo; Scholz, Maria Brígida dos Santos
    A reverse phase liquid chromatography method was developed for simultaneous determination of trigonelline, caffeine, nicotinic and chlorogenic (5-CQA) acids in roasted coffee. A gradient of acetic acid/acetonitrile was used as mobile phase and detection was carried out in the UV. The samples were extracted with acetonitrile/water (5:95 v/v) at 80 ºC/10 min. Good recovery (89 to 104%), repeatability and linearity were obtained. Detection limits of 0.01, 0.15, 0.04 and 0.04 mg mL-1 were observed for nicotinic acid, trigonelline, 5-CQA and caffeine. The method, applied to arabica and robusta coffees with different degrees of roasting, was efficient and fast (~35 min) and also allowed identification of cinnamic acids.