Coffee Science_v.15, 2020

URI permanente para esta coleçãohttps://thoth.dti.ufv.br/handle/123456789/12726

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 2 de 2
  • Imagem de Miniatura
    Item
    Soil chemical attributes in coffee growing with different agronomic techniques
    (Editora UFLA, 2020) Voltolini, Giovani Belutti; Silva, Larissa Cocato da; Alecrim, Ademilson de Oliveira; Castanheira, Dalyse Toledo; Resende, Laís Sousa; Rezende, Tiago Teruel; Guimarães, Rubens José
    The objective was to evaluate the chemical attributes in a coffee growing area, according to different agronomic techniques used and their associations. The experiment was conducted in the field, from January 2016 to October 2018. Coffee was planted in January 2016, with Mundo Novo IAC 379-19 coffee seedlings, with a spacing of 3.6 m between rows and 0.75 m between plants in the planting row. The factors under study were arranged in a 3x2x5 factorial scheme, making a total of 30 treatments. In the plots, three soil managements were randomized (soil cover with polyethylene film, soil cover with brachiaria-grass and conventional management of spontaneous vegetation). In the subplots, two types of fertilizers (conventional and increased-efficiency fertilizer). In the sub-subplots, four soil conditioners (coffee husk, phosphogypsum, water retention polymer, organic compost), and the control without conditioner. Aimed to evaluate soil chemical attributes in coffee growing with different agronomic techniques through the evaluation of: soil pH, phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), aluminum saturation (m) and base saturation (V%). The use of fertilizers combined with the application of organic compost or coffee husk, provide increased soil pH, as well as the use of ecological management of brachiaria-grass. The use of organic compost as a soil conditioner increases phosphorus availability in the soil. Coffee husk, as a soil conditioner, is an efficient potassium source for the coffee crop. The use of organic compost and phosphogypsum increases the calcium and magnesium contents in the soil. The use of organic compost and coffee husk was efficient in increasing the base saturation grown with coffee. The use of organic compost, coffee husk and phosphogypsum reduced aluminum saturation in the soil. Treatments associated with the use of organic compost improve calcium, phosphorus and magnesium levels, increase pH and base saturation, besides decreasing aluminum saturation.
  • Imagem de Miniatura
    Item
    Soil attributes and coffee yield in an agroforestry system
    (Editora UFLA, 2020) Jácome, Máximo Gerardo Ochoa; Mantovani, José Ricardo; Silva, Adriano Bortolotti da; Rezende, Tiago Teruel; Landgraf, Paulo Roberto Côrrea
    Coffee growing in an agroforestry system may provide improvements in soil chemical and physical attributes, increase crop yield and diversify production. However, there are few studies on coffee growing intercropped with high quality wood-producing species such as African mahogany, teak and Australian cedar. The objective of this study was to evaluate, in an agroforestry system, the effect of coffee intercropping with tree species and the density of these species on chemical and physical soil attributes and on coffee yield. The experiment was carried out in Santo Antônio do Amparo, MG, and Catuaí Vermelho IAC 99 coffee was used in a 3.4x0.7m spacing. A randomized block design with split plots was used, with one additional treatment and 4 replications. The treatments consisted, in the plot, of three tree forest species: Australian cedar, teak and African mahogany, used intercropped with coffee; and, in the subplots, two densities of these forest species: 82 plants ha-1 (13.6 m between rows and 9 m between plants) and 41 plants ha-1 (13.6 m between rows and 18 m between plants). The additional treatment consisted of conventional coffee cultivation growing without intercropping with the tree species. At 64 months after the experiment was set, when the forest species were still under development, soil samples were taken at a depth of 0 to 0.1 m to determine the following chemical attributes: pH in H2O, potential acidity, organic matter content, P-Mehlich, K+, Ca2+, Mg2+, S, B, Cu, Fe, Mn, Zn and base saturation (V%); and physical soil attributes: bulk density, macroporosity, microporosity, total porosity. Soil temperature at 0.05 m depth and coffee yield were also evaluated. Chemical and physical attributes, besides soil temperature, are similarly influenced with the cultivation of Australian cedar, teak and African mahogany, intercropped with coffee, in both densities, 82 and 41 plants ha-1, after 5 years of implementation of the agroforestry system. Coffee cultivation in agroforestry system with Australian cedar, teak and African mahogany increases the organic matter and P content of the soil, but acidifies the soil and does not influence its physical attributes. The agroforestry system with teak and African mahogany increases coffee yield.