Coffee Science_v.17, 2022
URI permanente para esta coleçãohttps://thoth.dti.ufv.br/handle/123456789/13712
Navegar
Item Effects of post-harvest process on volatile - sensory profile for coffee in Colombia(Universidade Federal de Lavras, 2022-12-28) Florez Arenas, Albeiro; Hincapie, Andres Mauricio Villegas; Ocampo, Gonzalo TabordaThe coffee fermentation process has been established as a determining stage regarding its quality and aroma. The objective of this study was to evaluate the differences that exist between five fermentation processes and within each process (at different fermentation times) based on their volatile and sensory profile. The processes evaluated were dry or natural (NA), semi-dry or honey (HO), and three variations of the wet process, called: conventional aerobic (AC), aerobic with previous fermentation in cherry (AFC) and anaerobic with previous fermentation in cherry (ANFC). The NA process obtained the highest score in the sensory profile and statistically different from the other processes. The volatile profile was determined by headspace solid phase micro-extraction (HS-SPME) and gas chromatography coupled to mass spectrometry (GC-MS). 51 volatile organic compounds (VOCs) were tentatively identified. The main chemical families that allowed differentiating between groups of processes were ketones and pyrroles, and the VOCs that mainly contribute to differentiate between process or groups of processes are: ethanone, 1-(1H-pyrrol-2-yl)-, 2,5-dimethylpyrazine, 2-furanmethanol, 4-vinylguayacol, 2-methylfuran, 2- butanone, 2,3-dimethylpyrazine, acetylpyrazine, 1- (2-furanylmethyl) -1H-pyrrole and 2,2'-bifuran. Within each fermentation process (between treatments) no differences were found from the final score of the sensory analysis, but differences were found from volatile profile.Item Evaluation of the behavior of coffee stored in cooled and natural environments(Universidade Federal de Lavras, 2023-01-11) Andrade, Ednilton Tavares de; Rezende, Renan Pereira; Borém, Flávio Meira; Rosa, Sttela Dellyzete Veiga Franco da; Rios, Paula de Almeida; Oliveira, Filipe da Silva deThe market value of coffee is strongly influenced by loss of quality, which makes storage one of the main steps in the entire production chain. The finite element method (FEM) and computational fluid dynamics (CFD) are numerical and computational techniques that facilitate the simulation of agricultural product storage systems. Computational modeling satisfactorily represents real experimentation, simplifies decision-making, and reduces costs. This study aimed to analyze mocha coffee storage for 6 months in a cooled environment with temperatures between 15 and 18 °C and in a natural environment. The water content, bulk density, specific heat, thermal conductivity, and thermal diffusivity were determined and colorimetry and sensory analysis were applied to compare initial and final samples of the product after storage. It was found that the water content and specific heat were the only properties that presented significant changes. Through sensory analysis, it was observed that the quality of the coffee was the same for both systems. A computational model was developed to simulate the heat transfer process during storage. The comparison of the simulation results with the experimental results for the temperature distribution in the grain mass showed overall mean relative errors of 2.34% for the natural environment and 5.74% for the cooled environment.