Coffee Science_v.17, 2022
URI permanente para esta coleçãohttps://thoth.dti.ufv.br/handle/123456789/13712
Navegar
4 resultados
Resultados da Pesquisa
Item Biocontrol of root-knot nematode Meloidogyne incognita in arabica coffee seedling by using fortified bacterial consortium(Universidade Federal de Lavras, 2023-01-11) Pradana, Ankardiansyah Pandu; Hoesain, Mohammad; Asyiah, Iis Nur; Adiwena, Muh; Budiman, Aris; Yousif, Ahmed Ibrahim AlrashidThe damage caused by the southern root-knot nematode (Meloidogyne incognita) in coffee plants has been reported in various countries, including Indonesia. The measures to control the nematodes on coffee seedlings and fields depend on synthetic nematicides. Addressing this issue requires not only a more environmentally friendly and cheaper technology but also equal effectiveness comparable to synthetic nematicides. This study aimed to test the effectiveness of fortified bacterial consortium (FBC) involving a combination of liquid organic fertilizer (LOF), botanical pesticide, and a bacterial consortium to control M. incognita infection in Coffea arabica seedlings. The treatments in this study consisted of control, synthetic nematicide with the active ingredient fluopyram, and various FBC concentrations ranging from 20%, 40%, 60%, 80%, and 100%. The results demonstrated that the application of 60% to 100% FBC increased plant growth. The most effective and efficient treatment for increasing plant growth was the application of 60% FBC. When compared with control plants, 60% FBC treatment resulted in 6.8% longer root, 9.5% higher plant, 5.3% heavier plant fresh weight, and 4.8% heavier root fresh weight. We also found that the application of 60% to 100% FBC increased the amount of chlorophyll in leaves. FBC application also reduced the number of nematodes in the soil up to 60.6%, the number of galls up to 286.4%, and the severity of root damage up to 118.2%. This study indicates that the application of 60% FBC is the most effective and efficient in controlling M. incognita and stimulating the growth of C. arabica seedlings.Item Management of coffee leaf rust using L-glutamic acid biofertilizer combined with fungicide(Universidade Federal de Lavras, 2022-12-28) Cabral, Samanta Aparecida Cristiano; Mafra, Natália Moreira; Carvalho, Beatriz Fagundes de; Rezende, Dalilla CarvalhoThe use of biofertilizers is a potential tool for the management of crop diseases. Coffee leaf rust, which is commonly controlled by triazole and strobilurin fungicides, is one of the main phytosanitary challenges associated with coffee cultivation. However, the indiscriminate use of such fungicides may be harmful to the environment and human health, in addition to having a negative impact on coffee exports. The aim of this study was to evaluate the effect of foliar application of L-glutamic acid on the incidence and severity of coffee leaf rust in the southern region of Minas Gerais, Brazil. A biofertilizer made of sugarcane molasses fermented by the bacterium Corynebacterium glutamicumwas used in combination with 25% L-glutamic acid and a fungicide of the triazole group registered for crops. The experimental design adopted was randomized blocks with four replications (eight plants per replicate) and seven treatments: fungicides, control test, 0.8 L ha-1 of biofertilizer, combinations of 0.04, 0.06, 0.08, and 0.1 L ha-1 of biofertilizer and fungicide.Three treatments were initially applied in a preventive way, before the rainy season, and then at intervals of 60 days. After seven months of treatment, we observed that coffee leaf rust incidence was significantly lower in coffee plants treated with combined products when compared to treatments of either fungicide or biofertilizer only, with a reduction of 56% and 45%, respectively, being observed. Among the combinations of biofertilizer and fungicide, coffee leaf rust incidence reduced with an increase in the biofertilizer dose, such thatthe disease incidence in plants treated with a dose of 0.1 L ha-1was 58% lower than that in plants treated with fungicide only. No differences in disease severity were observed among the treatments. In conclusion, the use of a combination of biofertilizer and fungicide is more effective for the management of coffee leaf rust than the use of the isolated products.Item Resistance of Coffea canephora as a sustainable tool for Meloidogyne incognita control(Universidade Federal de Lavras, 2022-12-29) Silva, Dvany Mamedes da; Vieira Júnior, José Roberto; Rocha, Rodrigo Barros; Espindula, Marcelo Curitiba; Rudnick, Vaneide Araújo de Sousa; Fernandes, Cléberson de Freitas; Uchôa, Francisco Paiva; Bastos, Jéssica Silva Felix; Freire, Tamiris Chaves; Sangi, Simone Carvalho; Fonseca, Aline Souza daMany factors can affect coffee production, such as the root-knot nematode, a soil pathogen that can kill plants up to two years old. In infested areas, the cultivation of resistant genotypes is an economical and ecologically appropriate alternative. The present study aims to evaluate the resistance of Coffea canephora clones to Meloidogyne incognita. Evaluations were carried out in a greenhouse at Embrapa Rondônia (Porto Velho -RO) between September 2019 and November 2020. Genotypes were inoculated with M. incognita in four experiments with six replications with a completely randomized design. Root dry weight (RDW), the number of galls (NG) and the reproduction factor (RF) were evaluated. Eighty-six coffee clones were evaluated, with 50 clones showing resistance to Meloidogyne incognita and 36 clones showing susceptibility. Clones classified as resistant had an average reproduction factor of 0.33 with a range of 0.00 to 0.95, while clones classified as susceptible had an average reproduction factor of 3.48 with an amplitude ranging from 1.02 to 14.46. The number of galls was also higher in susceptible clones than in resistant clones. Considering the ten most cultivated clones, the genotypes GJ8, GJ25, P50, SK80, AS2, P42 and LB10 were classified as resistant, and the genotypes GJ3, GJ5 and SK41 were classified as susceptible. Taken together, the results identify resistant C. canephora clones as an important and sustainable tool for controlling M. incógnita.Item The role of entomopathogenic fungi in controling the coffee berry borer (Hypothenemus hampei Ferrari) at various altitudes of Arabica coffee plantations(Universidade Federal de Lavras, 2022-06-09) Husni, H; Jauharlina, J; Maulidia, NindaA study was conducted to study the effect of altitude on the presence and effectiveness of entomopathogenic fungi in suppressing the development of the coffee berry borer (Hypethenemus hampei Ferr.) in Arabica coffee plantations in Aceh Tengah District, Aceh Province, Indonesia. We found that only the fungus of the genus Beuveria infects CBB pests in the coffee plantations. We also found that the infection rate of this fungus against CBB pests in coffee fields located at an altitude of 900-1,100 m was higher than in coffee fields located at an altitude above 1,100 m. At first observation showed that the attack rate of entomopathogenic fungi against CBB at an altitude of 900-1,100 m; 1,100-1,300 and 1,300-1,500 m were 6%, 3% and 1%, respectively. In the second observation, the attack rate at an altitude of 900-1,100 m, 1,100-1,300 m and 1,300-1,500 m, were 8%, 2% and 1%, respectively. This indicates that the higher the temperature around the coffee plantation, the higher the infection rate (attack) of the Beuveria fungus on CBB. The correlation analysis also showed that an increase in CBB attack on coffee berries was generally followed by an increase in entomopathogenic fungi attack. This indicates that the Beuveria sp fungus has played a role in suppressing and balancing the development of CBB pests in Arabica coffee plantations in Aceh Tengah District.