Anais da Academia Brasileira de Ciências
URI permanente para esta coleçãohttps://thoth.dti.ufv.br/handle/123456789/13096
Navegar
3 resultados
Resultados da Pesquisa
Item Green coffee extract attenuates Parkinson’s-related behaviors in animal models(Academia Brasileira de Ciências, 2021-11-01) Molska, Graziella R.; Paula-Freire, Lyvia Izaura G.; Sakalem, Marna E.; Köhn, Daniele O.; Negri, Giuseppina; Carlini, Elisaldo A.; Mendes, Fúlvio R.Epidemiological studies have shown an inverse association between coffee consumption and the development of Parkinson’s disease (PD). The effects of the oral treatment with green (non-roasted) coffee extracts (CE, 100 or 400 mg/kg) and caffeine (31.2 mg/kg) were evaluated on catalepsy induced by haloperidol in mice, and unilateral 6-OHDA lesion of medial forebrain bundle (MFB) or striatum in rats. Also, the in vitro antioxidant activity and the monoamine levels in the striatum were investigated. CE presented a mild antioxidant activity in vitro and its administration decreased the catalepsy index. CE at the dose of 400 mg/kg induced ipsilateral rotations 14 days after lesion; however, chronic 30-day CE and caffeine treatments did not interfere with the animals’ rotation after apomorphine or methamphetamine challenges in animals with MFB lesion, nor on monoamines levels. Furthermore, CE and caffeine were effective in inhibiting the asymmetry between ipsilateral and contralateral rotations induced by methamphetamine and apomorphine in animals with lesion in the striatum but did not avoid the monoamines depletion. These results indicate that CE components indirectly modulate dopaminergic transmission, suggesting a pro-dopaminergic action of CE, and further investigation must be conducted to elucidate the mechanisms of action and the possible neuroprotective role in PD.Item Arbuscular mycorrhizal fungi community in coffee agroforestry, consortium and monoculture systems(Academia Brasileira de Ciências, 2022-06-27) Barros, Welluma T.; Barreto-Garcia, Patrícia A. B.; Saggin Júnior, Orivaldo José; Scoriza, Rafael N.; Silva, Maicon S. daUnderstanding the effects of different production systems on arbuscular mycorrhizal fungi (AMF) can help to interpret interactions between their components and to define management strategies. As a result, our study was conducted on soils under three coffee production systems (one homogeneous and two heterogeneous) and in a native forest located in the Bahia state, Brazil. This study aimed to answer the following questions: 1) Does the organization and management of the coffee production system affect the occurrence and diversity of AMF?; and 2) Is the seasonality effect similar between systems? To do so, soil samples (0-10 cm depth) were collected at two times of the year (rainy and dry). Number of spores (NS) and average richness did not show differences between the systems, only between seasons. There was a reduction in NS in the dry season (1.4 and 2.7 spores g-1 soil) in relation to the rainy season (3.8 to 12.5 spores g-1 soil). The influence of coffee production systems was observed in the presence and absence of some AMF species. The AMF community was shown to be related to the plant species composition of the system, which was reflected in the dissimilarity of heterogeneous systems in relation to the coffee monoculture system.Item Increased atmospheric CO2 combined with local climatic variation affects phenolics and spider mite populations in coffee trees(Academia Brasileira de Ciências, 2021) Batista, Eunice R.; Marinho-Prado, Jeanne S.; Mineiro, Jeferson L. C.; Sato, Mário E.; Luiz, Alfredo J. B.; Frighetto, Rosa T. S.Modelling studies on climate change predict continuous increases in atmospheric carbon dioxide concentration [CO2] and increase in temperature. This may alter carbon-based phytochemicals such phenolics and modify plant interactions with herbivorous. We investigated the effects of enhanced [CO2] and local climatic variation on young coffee plants, Coffea arabica L. cv Catuaí vermelho IAC-144 and Obatã vermelho IAC-1669-20, cultivated in the FACE (Free-Air Carbon Dioxide Enrichment) facility under two atmospheric [CO2] conditions. Coffee leaves were evaluated for total soluble phenolics (TSP), chlorogenic (5-CQA) and caffeic (CAF) acids, diversity and population size of mites, along two dry and two rainy seasons. Elevated atmospheric CO2 (e[CO2]) signifi cantly decreased 5-CQA in cv. Catuaí but did not affect cv. Obatã. Species richness and population size of mites in coffee leaves were not affected by e[CO2] but were strongly related to the seasonal variability of coffee leaf phenolics. In general, high levels of phenolics were negatively correlated with population size while the mite species richness were negatively correlated with 5-CQA and TSP levels. Our fi ndings show that [CO2] enhancement affects phenolics in coffee plants differentially by cultivars, however seasonality is the key determinant of phenolics composition, mite species richness and population size.