Ciência Rural

URI permanente para esta coleçãohttps://thoth.dti.ufv.br/handle/123456789/10366

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 2 de 2
  • Imagem de Miniatura
    Item
    Bayesian modeling of the coffee tree growth curve
    (Universidade Federal de Santa Maria, 2022-03-14) Pereira, Adriele Aparecida; Silva, Edilson Marcelino; Fernandes, Tales Jesus; Morais, Augusto Ramalho de; Sáfadi, Thelma; Muniz, Joel Augusto
    When modeling growth curves, it should be considered that longitudinal data may show residual autocorrelation, and, if this characteristic is not considered, the results and inferences may be compromised. The Bayesian approach, which considers priori information about studied phenomenon has been shown to be efficient in estimating parameters. However, as it is generally not possible to obtain marginal distributions analytically, it is necessary to use some method, such as the weighted resampling method, to generate samples of these distributions and thus obtain an approximation. Among the advantages of this method, stand out the generation of independent samples and the fact that it is not necessary to evaluate convergence. In this context, the objective of this work research was: to present the Bayesian nonlinear modeling of the coffee tree height growth, irrigated and non-irrigated (NI), considering the residual autocorrelation and the nonlinear Logistic, Brody, von Bertalanffy and Richard models. Among the results, it was found that, for NI plants, the Deviance Information Criterion (DIC) and the Criterion of density Predictive Ordered (CPO), indicated that, among the evaluated models, the Logistic model is the one that best describes the height growth of the coffee tree over time. For irrigated plants, these same criteria indicated the Brody model. Thus, the growth of the non-irrigated and irrigated coffee tree followed different growth patterns, the height of the non-irrigated coffee tree showed sigmoidal growth with maximum growth rate at 726 days after planting and the irrigated coffee tree starts its development with high growth rates that gradually decrease over time.
  • Imagem de Miniatura
    Item
    Double sigmoidal models describing the growth of coffee berries
    (Universidade Federal de Santa Maria, 2017-08) Fernandes, Tales Jesus; Pereira, Adriele Aparecida; Muniz, Joel Augusto
    This study aimed to verify if the growth pattern of coffee berries, considering fresh mass accumulation over time, is double sigmoid and to select the most suitable nonlinear model to describe such behavior. Data used consisted of fourteen longitudinal observations of average fresh mass of coffee berries obtained in an experiment with the cultivar Obatã IAC 1669-20. The fits provided by the Logistic and Gompertz models were compared in their single and double versions. Parameters were estimated using the least squares method using the Gauss-Newton algorithm implemented in the nls function of the R software. It can be concluded that the growth pattern of the coffee fruit, in fresh mass accumulation, is double sigmoid. The double Gompertz and double Logistic models were adequate to describe such a growth curve, with a superiority of the double Logistic model.