Use of classifier to determine coffee harvest time by detachment force

dc.contributor.authorBarros, Murilo M. de
dc.contributor.authorSilva, Fábio M. da
dc.contributor.authorCosta, Anderson G.
dc.contributor.authorFerraz, Gabriel A. e S.
dc.contributor.authorSilva, Flávio C. da
dc.date.accessioned2018-12-04T11:11:03Z
dc.date.available2018-12-04T11:11:03Z
dc.date.issued2018-09
dc.description.abstractCoffee quality is an essential aspect to increase its commercial value and for the Brazilian coffee business to remain prominent in the world market. Fruit maturity stage at harvest is an important factor that affects the quality and commercial value of the product. Therefore, the objective of this study was to develop a classifier using neural networks to distinguish green coffee fruits from mature coffee fruits, based on the detachment force. Fruit detachment force and the percentage value of the maturity stage were measured during a 75-day harvest window. Collections were carried out biweekly, resulting in five different moments within the harvest period. A classifier was developed using neural networks to distinguish green fruits from mature fruits in the harvest period analyzed. The results show that, in the first half of June, the supervised classified had the highest success percentage in differentiating green fruits from mature fruits, and this period was considered as ideal for a selective harvest under these experimental conditions.pt_BR
dc.description.abstractA qualidade do café é um aspecto imprescindível para o aumento do seu valor comercial e para que a cafeicultura brasileira continue com destaque no mercado mundial. O estádio de maturação dos frutos no momento da colheita é um dos fatores importantes que interfere na qualidade e no valor comercial do produto. Com a realização deste trabalho, objetivou-se desenvolver um classificador para determinação do momento de colheita do café pela força de desprendimento. A força de desprendimento dos frutos e o valor percentual do estádio de maturação foram mensurados durante a janela de colheita de 75 dias. As coletas foram realizadas quinzenalmente, resultando em cinco momentos distintos no período de colheita. Um classificador foi desenvolvido a partir de redes neurais para distinguir frutos verdes e cerejas nos momentos de colheita analisados. Os resultados demostraram que a primeira quinzena de junho foi o momento em que o classificador supervisionado apresentou a maior porcentagem de acerto na distinção de frutos verdes e cerejas, sendo este, o momento adequado para realização de uma colheita seletiva para as condições deste experimento.pt_BR
dc.formatpdfpt_BR
dc.identifier.citationBARROS, M. M. et al. Use of classifier to determine coffee harvest time by detachment force. Revista Brasileira de Engenharia Agrícola e Ambiental, Campina Grande, v.22, n.5, p.366-370, 2018.pt_BR
dc.identifier.issn1807-1929
dc.identifier.urihttp://dx.doi.org/10.1590/1807-1929/agriambi.v22n5p366-370pt_BR
dc.identifier.urihttp://www.sbicafe.ufv.br/handle/123456789/10521
dc.language.isoenpt_BR
dc.publisherDepartamento de Engenharia Agrícola - UFCGpt_BR
dc.relation.ispartofseriesRevista Brasileira de Engenharia Agrícola e Ambiental;v.22, n.5, p.366-370, 2018
dc.rightsOpen Accesspt_BR
dc.subjectGerenciamentopt_BR
dc.subjectMaturaçãopt_BR
dc.subjectClassificadores supervisionadospt_BR
dc.subject.classificationCafeicultura::Colheita, pós-colheita e armazenamentopt_BR
dc.titleUse of classifier to determine coffee harvest time by detachment forcept_BR
dc.titleUso de classificador para determinação do momento de colheita do café pela força de desprendimentopt_BR
dc.typeArtigopt_BR

Arquivos

Pacote original

Agora exibindo 1 - 1 de 1
Imagem de Miniatura
Nome:
Rev. Bras. Eng. Agric. Ambient._v. 22_n. 5_p. 366 - 370_2018.pdf
Tamanho:
191.88 KB
Formato:
Adobe Portable Document Format
Descrição:

Licença do pacote

Agora exibindo 1 - 1 de 1
Nenhuma Miniatura Disponível
Nome:
license.txt
Tamanho:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descrição: