Modelo misto via mínimos quadrados para delineamentos de blends de cafés
Data
2018-02-16
Autores
Título da Revista
ISSN da Revista
Título de Volume
Editor
Universidade Federal de Lavras
Resumo
O presente estudo tem por objetivo propor um modelo misto em uma análise sensorial de quatro experimentos de blends de cafés especiais da espécie Coffea Arabica, representado por genótipos Bourbon Amarelo e Acaiá e não especiais definidos pelos cafés Canephora e Comercial. Cada experimento foi diferenciado em função do tipo de processamento: via seca e úmida e concentrações na bebida definida por 0,07 e 0,10 (m/v), em que essas quantidades representaram gramas de pó de café para cada 100 ml de água. Em todos os experimentos, as variáveis respostas foram caracterizadas pelos atributos sensoriais: Sabor, Amargor e Nota. Para implementação do modelo, considerou-se a abordagem dada pelo método de mínimos quadrados, por ser de fácil compreensão e implementação ao pesquisador. Os scripts foram desenvolvidos no software R e disponibilizados no pacote Blendstat. Concluiu-se que a agregação dos efeitos aleatórios dos experimentos contribuiu para a discriminação dos experimentos, nos quais os blends formados por cafés especiais da mesma procedência (altitude), genótipo e concentração foram similares ao atributo sabor, em ambas as formas de processamento, via seca e úmida.
The present study aims to propose a mixed model in a sensory analysis of four blends of special coffea Coffea Arabica experiments, represented by Yellow Bourbon and Acaiá genotypes and non-special ones defined by Canephora and Comercial coffees. Each experiment was differentiated according to the processing type: dry and wet, and beverage concentrations defined as 0.07 and 0.10 (m / v), in which these amounts represented grams of coffee powder per 100 ml of water. In all experiments, the response variables were characterized by the sensory attributes: Taste, Bitterness and Note. For the implementation of the model, we considered the approach given by the least squares method, because it is easy to understand and implement to the researcher. The scripts were developed in the R software and made available in the Blendstat package. It was concluded that the aggregation of the experiments random effects contributed to the discrimination of the experiments, in which the blends of special coffees with the same origin (altitude), genotype and concentration were similar for the flavor attribute in both forms of dry and humid via processing
The present study aims to propose a mixed model in a sensory analysis of four blends of special coffea Coffea Arabica experiments, represented by Yellow Bourbon and Acaiá genotypes and non-special ones defined by Canephora and Comercial coffees. Each experiment was differentiated according to the processing type: dry and wet, and beverage concentrations defined as 0.07 and 0.10 (m / v), in which these amounts represented grams of coffee powder per 100 ml of water. In all experiments, the response variables were characterized by the sensory attributes: Taste, Bitterness and Note. For the implementation of the model, we considered the approach given by the least squares method, because it is easy to understand and implement to the researcher. The scripts were developed in the R software and made available in the Blendstat package. It was concluded that the aggregation of the experiments random effects contributed to the discrimination of the experiments, in which the blends of special coffees with the same origin (altitude), genotype and concentration were similar for the flavor attribute in both forms of dry and humid via processing
Descrição
Dissertação de Mestrado defendida na Universidade Federal de Lavras
Palavras-chave
Modelo misto, Mínimos quadrados, Blends de café, Delineamentos de misturas, Variável de processo, Mixed model, Least squares, Coffee blends, Mix designs, Process variable
Citação
PAULINO, Allana Lívia Beserra. Modelo misto via mínimos quadrados para delineamentos de blends de cafés. 2018. 56 p. Dissertação (Mestrado em Estatística e Experimentação Agropecuária) - Universidade Federal de Lavras, Lavras, 2018.