Engenharia Agrícola

URI permanente para esta coleçãohttps://thoth.dti.ufv.br/handle/123456789/10363

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 4 de 4
  • Imagem de Miniatura
    Item
    Mobile Application for Adjusting Air-Bast Sprayers in Coffee Plantation
    (Associação Brasileira de Engenharia Agrícola, 2022-09-13) Cunha, João P. A. R. da; Alves, Thales C.; Penha, Rafael S. A.
    Mobile application development advances, particularly for smartphones and tablets, have allowed farmers to make decisions more assertively in their agrobusiness management. This article addresses the development and evaluation of an app aimed at people who deal with the pesticide application technology in coffee farming, more specifically, adjustment and calibration of sprayers. This mobile app provides the main data necessary for a correct calibration of air-blast sprayers to apply pesticides in coffee planting. Its functionalities include calculation of the application rate for each situation (L ha-1) based on data obtained in the field, such as canopy volume. The app, called SprayCafé, was developed for the Android platform using the Java programming language in the integrated development environment Android Studio. After the development, the application was evaluated, based on a questionnaire answered by 139 users, who ranked the following requirements: ease of use, loading time, adequacy of screen resolution, data relevance, sequence of information, and applicability, among others. The system proved to be simple and robust; it was thus assessed as adequate to the field and to be of great value for coffee planting, especially because it allows safer and more adequate pesticide application. The graphical user interface is interactive and easy to use.
  • Imagem de Miniatura
    Item
    Mobile application for adjusting air-blast sprayers in coffee plantation
    (Associação Brasileira de Engenharia Agrícola, 2022-09-13) Cunha, João P. A. R. da; Alves, Thales C.; Penha, Rafael S. A.
    Mobile application development advances, particularly for smartphones and tablets, have allowed farmers to make decisions more assertively in their agrobusiness management. This article addresses the development and evaluation of an app aimed at people who deal with the pesticide application technology in coffee farming, more specifically, adjustment and calibration of sprayers. This mobile app provides the main data necessary for a correct calibration of air-blast sprayers to apply pesticides in coffee planting. Its functionalities include calculation of the application rate for each situation (L ha-1) based on data obtained in the field, such as canopy volume. The app, called SprayCafé, was developed for the Android platform using the Java programming language in the integrated development environment Android Studio. After the development, the application was evaluated, based on a questionnaire answered by 139 users, who ranked the following requirements: ease of use, loading time, adequacy of screen resolution, data relevance, sequence of information, and applicability, among others. The system proved to be simple and robust; it was thus assessed as adequate to the field and to be of great value for coffee planting, especially because it allows safer and more adequate pesticide application. The graphical user interface is interactive and easy to use.
  • Imagem de Miniatura
    Item
    Monitoring the vegetative state of coffee using vegetation indices
    (Associação Brasileira de Engenharia Agrícola, 2024) Chedid, Vitor; Cortez, Jorge W.; Arcoverde, Sálvio N. S.
    Vegetation indices are a quick and practical alternative for monitoring crops due to the availability of satellite images on various platforms for free, allowing a quick analysis of the vegetative state of the crop and interventions in the field in case of signs of diseases and pests. In this context, this study aimed to evaluate the vegetative state of the coffee crop using vegetation indices (NDVI, SAVI, ARVI, EVI, and VDVI) in an agricultural year. The study was carried out on a commercial farm using satellite images from the Planet platform, during an agricultural coffee growing season (2021/2022). The indices selected for the study were the Normalized Difference Vegetation Index (NDVI), Soil-Adjusted Vegetation Index (SAVI), Atmospherically Resistant Vegetation Index (ARVI), Enhanced Vegetation Index (EVI), and Visible Difference Vegetation Index (VDVI). The index data were analyzed using descriptive statistics, Pearson correlation, classification/interpretation proposal, and the Kappa index. NDVI and SAVI are efficient in monitoring coffee cultivation in an agricultural year, as the Kappa index was higher than 90%. ARVI and EVI had Kappa index values close to 90% and can be used to monitor the crop. VDVI was inefficient, with a low Kappa index value when compared to the others. The proposed classification for vegetation indices based on NDVI classes and values consisted of an important tool for classifying and interpreting the values of these indices, assisting monitoring and management of coffee cultivation.
  • Imagem de Miniatura
    Item
    Sorption isotherms and isosteric heat of pericarp and endosperm tissues of arabica coffee fruit
    (Associação Brasileira de Engenharia Agrícola, 2020) Dias, Camila de A.; Andrade, Ednilton T. de; Lemos, Isabella A.; Borém, Flávio M.; Barros, Ezequiel A.
    The aim of this study was to evaluate and model the hygroscopic equilibrium and isosteric heat curves of pericarp and endosperm tissues of arabica (Coffea arabica) coffee fruit, in different temperature and relative humidity conditions. Sorption isotherms were drawn under temperatures from 20°C to 70°C and relative humidity ranging between 10% and 90% until the product reached the equilibrium water content with the environment. The experiment was set up in a 4 × 4 factorial scheme (four relative humidity of the drying air and three tissues of the coffee cherry pericarp + endosperm [1: exocarp + part of the mesocarp, 2: mesocarp, 3: endocarp, 4: endosperm]), in a completely randomized design, with three repetitions. The results were examined by analysis of variance and regression using the STATISTICA 5.0 statistical software. Among the analyzed models, the ones that best fit the experimental data were modified GAB, for exocarp + part of mesocarp and mesocarp, modified Henderson, for endocarp, and Sabbab for endosperm. It was observed that, for all treatments, the lower water contents required a higher amount of energy to reach the equilibrium water content, and the integral isosteric heat decreased with the increasing equilibrium water content.