Engenharia Agrícola
URI permanente para esta coleçãohttps://thoth.dti.ufv.br/handle/123456789/10363
Navegar
3 resultados
Resultados da Pesquisa
Item Impact of Slow Drying in a Cold Room on Coffee Sensory, Chemical, and Physical Properties(Associação Brasileira de Engenharia Agrícola, 2024-04-26) Jordan, Rodrigo A.; Oliveira, Fabrício C. de; Argandoña, Eliana J. S.; Motomiya, Anamari V. A.; Santos, Rodrigo C.This study aimed to evaluate the duplicity and synergism of slow drying and storage processes at low temperatures, using a refrigerated room under suitable conditions for coffee fruit just after harvest. A cold room was prepared to receive and store coffee fruit in bulk directly from the field, perform slow drying, and maintain water content at approximately 12% during three months of storage. The room operated at temperatures between 7 and 14 ºC and relative humidity between 37 and 41%. The coffee variety used was the Conilon Yellow 62. The initial water content reduction period from 54% (wb) to 12% (wb) was two months. For comparison, coffee harvested from the same batch was dried on a covered suspended bed. Results showed that the coffee dried and stored in the cold room received a sensory score of 86.41, while that dried on a suspended bed obtained a sensory score of 84.16. Moreover, the coffee dried and stored in the cold room had a higher energy content. Colorimetric analysis showed that the dried grains stored in the cold room had a reduction in the "a" coordinate, indicating an approximation to the green color. The cold room also allowed for extended storage of the coffee grains.Item ATR-FTIR for characterizing and differentiating dried and ground coffee cherry pulp of different varieties (Coffea arabica L.)(Associação Brasileira de Engenharia Agrícola, 2021) Barrios-Rodríguez, Yeison; Collazos-Escobar, Gentil A.; Gutiérrez-Guzmán, NelsonThis study aimed to evaluate the performance of the infrared spectrum in the range of 4000−650 cm−1 for characterizing and differentiating dried and ground coffee cherry pulp of different varieties. The spectral data were subjected to first and second derivative treatments to perform the statistical analyses. Three varieties of coffee pulp were previously characterized for color, water activity, moisture, chlorogenic acids, and caffeine. The results of principal component analysis (PCA) showed that Fourier transform infrared (FTIR) spectroscopy is a viable technique for characterizing and differentiating dried and ground coffee cherry pulp among different varieties, showing the best differentiation with treatment of data from the first derivative, which was mainly associated with the caffeine content and chlorogenic acids. This study is the first investigation of FTIR spectroscopy with attenuated total reflectance for characterizing dried and ground coffee cherry pulp from coffee varieties grown in Colombia.Item Influence of different temperatures and airflows on drying of natural and pulped coffee(Associação Brasileira de Engenharia Agrícola, 2020) Alves, Guilherme E.; Borém, Flávio M.; Andrade, Ednilton T.; Isquierdo, Éder P.; Siqueira, Valdiney C.; Dias, Camila de A.This study aimed to evaluate drying kinetics for natural and pulped coffee, using diferente temperatures and drying airflows. For the conduction of the experiment, coffee fruits (Coffea arabica L. cv. Topázio) were harvested manually, selecting only ripe fruits and subsequent to the hydraulic separation. For drying the coffee, use a mechanical dryer with two temperatures (40 and 45°C) and four drying air streams (24; 60; 96 and 132 m3.min- 1.m-2). Twelve models for employees to describe the drying kinetics of coffees. Among the models used to describe the drying process of natural coffee and pulped coffee, according to the results of the coefficient of determination, relative mean error, standard deviation of estimates and distribution of waste distribution, proposed model for the Only one that presents fit for all as conditions study. The temperature of 45 ° C and the airflows of 96 and 132 m3.min-1.m-2 provide the shortest drying times regardless of the coffee processing type.