Revista Brasileira de Ciência do Solo
URI permanente para esta coleçãohttps://thoth.dti.ufv.br/handle/123456789/9883
Navegar
5 resultados
Resultados da Pesquisa
Item Load-bearing capacity and critical water content of the coffee plantation soil with management in full sun and shaded(Sociedade Brasileira de Ciência do Solo, 2022-09-12) Lacerda, Kasé Santos; Vargas, Rafaela Carvalho; Ribeiro, Kleber Mariano; Dias Junior, Moacir de Souza; Ribeiro, Kátia Daniela; Abreu, Dorotéo deNew management practices applied to coffee crops may influence the soil’s capacity to tolerate vertical stresses. This paper aimed to evaluate the influence of two coffee crop management systems on the soil load-bearing capacity and critical soil water content to agricultural machinery traffic. This study was performed in the experimental area of the Federal Institute of the Southeast of Minas Gerais - Rio Pomba college, in Rio Pomba city, Minas Gerais, Brazil. Dystrophic Red-Yellow Oxisol (Latossolo Vermelho-Amarelo distrófico) (LVA7) with clayed texture predominating in the experimental unit. Undisturbed soil samples were collected from layers of 0.00-0.03, 0.12-0.15 and 0.27-0.30 m, randomly, in the center of the interrows of coffee plants (Coffea arabica L.) in monoculture plots under traditional management (in full sun) and in the plots of coffee plants intercropped with gliricidia (Gliricidia sepium) (shaded) to estimate pre-consolidation pressures, through uniaxial compression tests and adjustment of soil load-bearing capacity models. The average and maximum normal stresses applied to the soil and the vertical stress distribution of three agricultural tractors used in mechanized farming operations were estimated, and the critical soil water content to the traffic of these tractors was determined for both treatments, aiding in the decision-making process regarding additional compaction risks in the area. Cultivation of gliricidia in consortium with coffee did not influence the soil load-bearing capacity. The soil layer of 0.12-0.15 m was the most vulnerable to vertical stresses in both treatments. Agricultural tractors Agrale 4100, MF 265 and MF 275 presented values of vertical stresses of 335.76, 200.24 and 245.55 kPa, respectively, and the soil water content for the traffic of agricultural machines without plastic deformation was higher in the coffee plants in full sun for all studied depths.Item Soil chemical properties and nutrition of conilon coffee fertilized with molybdenum and nitrogen(Sociedade Brasileira de Ciência do Solo, 2021-11-22) Rosado, Thiago Lopes; Freitas, Marta Simone Mendonça; Carvalho, Almy Junior Cordeiro de; Gontijo, Ivoney; Pires, André Assis; Vieira, Henrique Duarte; Barcellos, RonildoMolybdenum (Mo) availability is strongly affected by soil pH, which determines the dynamics of electrical charges and the adsorption of molybdate. This study evaluated the effects of nitrogen (N) and Mo application on the chemical properties of a Latossolo Amarelo (Oxisol) and in Coffea canephora nutrition and productivity throughout two productive cycles under field conditions. The experiment was conducted from June 2018 to May 2020. The experimental design used was in randomized blocks, in a 2 × 5 factorial scheme, the first factor being the absence and presence (4 kg ha-1 yr-1) of molybdic fertilization and the second factor was the N dose (300, 500, 700, 900, and 1,100 kg ha-1 yr-1). At the end of each production cycle, soil samples were collected to evaluate the pH(H2O), pH(KCl), exchangeable aluminum, potential acidity, organic matter, and Mo, at layers of 0.00-0.20 and 0.20-0.40 m. Leaves were sampled from the coffee tree to determine Mo and N contents and the coffee beans were harvested to evaluate the yield of processed coffee. The results showed that urea has a high potential for soil acidification, influencing the values of exchangeable aluminum, potential acidity, and ∆pH, at layers of 0.00-0.20 and 0.20-0.40 m. The decrease in pH caused by increasing doses of N increased the density of positive electrical charges of the soil and reduced Mo content in the leaves of C. canephora by 67 %. The application of sodium molybdate via soil was efficient in providing Mo to Conilon coffee and provided a 3.7 % increase in the yield of processed coffee. Nevertheless, molybdic fertilization did not influence the Mo content in the soil in the evaluations carried out at the end of each production cycle.Item Occurrence of arbuscular mycorrhizal fungi in leaf litter and roots of shaded coffee plantations under organic and conventional management(Sociedade Brasileira de Ciência do Solo, 2021) Díaz-Ariza, Lucía Ana; Rivera, Emma Lucía; Sánchez, NataliaEvidence of arbuscular mycorrhizal fungal colonization of mat litter in various ecosystems plus previous reports of external mycelium of those fungi and mycorrhizal roots in litter from coffee plants and shade trees on coffee plantations suggest that they have a relationship with closed direct nutrient cycling between organic matter and living roots. This relationship was first proposed more than 50 years ago. Mycorrhizal symbiosis in tropical crops is affected by agricultural management practices. This study aimed to assess the occurrence of arbuscular mycorrhizal fungi in leaf litter from three shaded Colombian coffee agroecosystems under organic and conventional management. One is managed chemically, one organically, and one with a combined use of organic and chemical inputs. Leaf litter and roots were collected from the three coffee plots at three decomposition stages. Each plot represented a distinct fertilization and tree dominance pattern different from the other two plots. Arbuscular mycorrhizal fungi were found in decomposing leaves. The chemically managed plot showed statistical differences (p<0.05) with respect to the other plots, it had the greatest amounts of arbuscular mycorrhizal fungal root colonization (48.76–70.51 %), litter colonization (36.2–69.91 %), external mycelium length (28.66–48.33 m g-1), and spore number (451.27–681.2 spores in 20 g of dry soil). In contrast, conditions on the combined management coffee plot results in smaller means of the variables evaluated. Arbuscular mycorrhizal fungal root colonization and nitrogen content of leaf litter varied among the decomposition stages (p<0.05). Litter quality of different tree species may have influenced colonization of plant matter within each plot. We found evidence of typical structures of arbuscular mycorrhizal fungi within and among decomposing leaf litter and roots growing into the mat litter in tropical agroecosystems. This supports the thought that these fungi have a role in carbon and nutrient recycling, which are influenced by agricultural management practices and plant population composition.Item Structural quality and load-bearing capacity of an Ultisol (Argissolo Vermelho amarelo) in mechanized coffee areas with different deployment times(Sociedade Brasileira de Ciência do Solo, 2020) Sandoval, Fábio Henrique Barbosa; Souza, Zigomar Menezes de; Lima, Elizeu de Souza; Silva, Reginaldo Barbosa da; Oliveira, Ingrid Nehmi de; Esteban, Diego Alexander Aguilera; Lovera, Lenon HenriqueThe mechanized management systems used in Brazilian coffee plantations generate heavy machine traffic and lead to the application of loads on the soil that affect the soil structure and lead to widespread compaction. This study aimed to evaluate the influence of mechanized operations on coffee plantations with different deployment times on the soil structural quality of an Ultisol, based on its soil physical properties and soil load-bearing capacity. The experiment was carried out in Muzambinho, São Paulo State, Southeast Brazil, in coffee plantations (Coffee arabica L.) with 3, 16, and 32 years of service. In each area, corresponding to the coffee plantation’s establishment period, soil samples were collected in the planting row (R), under the coffee canopy (UCC), and inter-row center (IRC) at the layers of 0.00-0.10, 0.10-0.20, and 0.20-0.40 m to evaluate soil penetration resistance, bulk density, porosity, wet aggregate stability, and preconsolidation pressure, to model soil load-bearing capacity. The deployment time of the coffee crop was a decisive factor in reducing the deterioration of the soil structure in the row, which was confirmed by better structural quality in the plantations with 16 and 32 years of establishment. Irrespective of crop deployment time, the effects of intensive machinery traffic on the coffee crop in the middle between the rows and in the area under the canopy are similar, resulting in high soil compaction, reflected in soil penetration resistance, soil bulk density, macroporosity, and load-bearing capacity. The longer the deployment time of the coffee cultivation areas (32 and 16 years), the higher the stability of the soil aggregates, and the larger the mean aggregate size.Item Polyol-ester impact on boron foliar absorption and remobilization in cotton and coffee trees(Sociedade Brasileira de Ciência do Solo, 2020) Rosolem, Ciro Antonio; Almeida, Danilo Silva; Cruz, Caio VilelaFoliar fertilization can be recommended to treat boron (B) deficiency in coffee and cotton. Considering that B foliar fertilizers with polyol-boron complexes can affect B uptake and mobility differently within the plant, and coffee and cotton have different cuticles and stomata density, a differential response would be expected. We aimed to study the foliar application of boric acid combined with sorbitol on B uptake and translocation in cotton and coffee. Green-house grown plants received B as boric acid and a sorbitol-monoethanolamine complex and were sampled up to 96 h after application. Boron absorption was fast, reaching 60 and 80 % in cotton and coffee 96 h after application, respectively. Uptake rates and total B absorption were similar for the fertilizers. The proportion of B taken up by coffee is greater than by cotton likely because of the greater stomata density in coffee and less likely due to the higher amount of wax in cotton cuticle. Boron remobilization is higher in coffee as compared with cotton. Sorbitol seems to increase B transport in the transpiratory stream of cotton, but impairs remobilization in the phloem since B translocation to roots is decreased in both cotton and coffee.