Revista Brasileira de Ciência do Solo

URI permanente para esta coleçãohttps://thoth.dti.ufv.br/handle/123456789/9883

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 10 de 78
  • Imagem de Miniatura
    Item
    Diagnose nutricional de cafeeiros da região do Alto Jequitinhonha (MG): normas dris e faixas críticas de nutrientes
    (Sociedade Brasileira de Ciência do Solo, 2009-10-30) Farnezi, Múcio Mágno de Melo; Silva, Enilson de Barros; Guimarães, Paulo Tácito Gontijo
    As normas do Sistema Integrado de Diagnose e Recomendação (DRIS) ainda não foram estabelecidas para a cultura do café do Alto Jequitinhonha, MG, o que impede que o DRIS seja aplicado nos cafeeiros da região. A diagnose foliar, mediante o uso do DRIS e de faixas críticas de referência, destaca-se entre as ferramentas potenciais que permitem usar eficientemente os fertilizantes. Desse modo, este trabalho objetiva estabelecer as normas DRIS, bem como estimar os valores das faixas críticas dos nutrientes de referência para a diagnose nutricional de cafeeiros da região do Alto Jequitinhonha, por meio do DRIS. Determinaram-se os teores foliares de N, P, K, Ca, Mg, S, B, Cu, Fe, Mn e Zn em 52 lavouras cafeeiras, em duas safras (2005 e 2006). Foram selecionadas, para estabelecer as normas DRIS, 23 lavouras em cada safra com produtividade maior e igual a 30 sacas de grãos de café por hectare. As faixas críticas obtidas do DRIS, determinando-se a frequência com que o teor de cada nutriente das lavouras nas duas safras foi deficiente, adequado ou excessivo em relação aos padrões mencionados e teores considerados adequados pela literatura. As normas DRIS foram estabelecidas para cafeeiros da região do Alto Jequitinhonha e utilizadas para propor faixas críticas adequadas. Para isso, foram estabelecidos os valores para N (2,25-2,79 dag kg-1), P (0,18-0,22 dag kg-1), K (1,72-2,10 dag kg-1), Ca (1,26-1,51 dag kg-1), Mg (0,29-0,35 dag kg-1), S (0,13-0,32 dag kg-1), B (83,8-96,3 mg kg-1), Cu (5,7-9,3 mg kg-1), Fe (67,5-116,2 mg kg-1), Mn (219-422 mg kg-1) e Zn (17,4-30,0 mg kg-1), e faixas críticas adequadas para diagnose nutricional de cafeeiros da região do Alto Jequitinhonha, no Estado de Minas Gerais. Os cafezais da região em desequilíbrio apresentaram deficiência em P, K, S, B, Cu, Mn e Zn e excesso de Ca, Mg e Fe.
  • Imagem de Miniatura
    Item
    Land Use and Changes in Soil Morphology and Physical-Chemical Properties in Southern Amazon
    (Sociedade Brasileira de Ciência do Solo, 2017) Melo, Vander Freitas; Orrutéa, Alessandro Góis; Motta, Antônio Carlos Vargas; Testoni, Samara Alves
    Many Amazonian farmers use the slash-and-burn method rather than fertilization for crop production. The aim of the present study was to evaluate changes in the morphological, physical, and chemical properties of naturally fertile Inceptisols after conversion from native forest to different uses in southern Amazonia, Brazil. Land covered by dense native forest (NF) was split into four areas of 1.0 ha each. Three areas were slashed and burned and then cultivated for 11 years with coffee (CO), secondary forest (SF), and pasture (PA). Four soil profiles were sampled in each treatment (four uses × four replicates). The mean value distribution of each physical and chemical analysis was determined for different depths, and standard error bars were placed to display significant differences among treatments. Results showed that morphology and physical properties were negatively affected after the establishment of PA and CO: a reduction in the thickness of the A horizon and in aggregate stability, a decrease in total porosity and macroporosity, and an increase in aggregate size and bulk density. Soil bulk density (SBD), geometric mean diameter of water-stable aggregates (GMD), and microporosity (SMi) were higher in soil under pasture as a consequence of more intense soil surface compaction. Native and secondary forests were the only treatments that showed granular structures in the A horizon. Significant differences between native forest and secondary forest were mainly found in the top soil layer for total porosity (STP) (NF>SF), macroporosity (SMa) (NF>SF), SBD (NF>SF) and GMD (SF>NF). Phosphorus contents in the A horizon increased from 6.2 to 21.5 mg kg-1 in PA and to 27.2 mg kg-1 in SF. Soil under coffee cultivation exhibited the lowest levels of Ca2+ and sum of bases in surface horizons. In all slash-and-burn areas there was a reduction in the C stock (Mg ha-1) of the A horizon: native forest 6.3, secondary forest 4.5, pasture 3.3, and coffee 3.1.
  • Imagem de Miniatura
    Item
    Physiological and morphological responses of Arabica coffee cultivars to soil compaction
    (Sociedade Brasileira de Ciência do Solo, 2023-12-22) Ramos, Elísia Gomes; Barros, Vanessa Maria de Souza; Miranda, José Danizete Brás; Silva, Laís Maria Rodrigues; Neves, Júlio Cesar Lima; Meira, Renata Maria Strozi Alves; Oliveira, Teogenes Senna de
    Compaction caused by mechanization affects soil quality and, consequently, the development of crops. This study aimed to evaluate the effect of different degrees of soil compaction on the physiology, morphology, and anatomy of different coffee cultivars in a controlled environment. The experiment was carried out in a greenhouse, with randomized block design in a 5 × 5 factorial arrangement, with five coffee cultivars (Arara, Catuaí Amarelo IAC 62, Catuaí Vermelho 144, MGS Paraíso 2 and Mundo Novo IAC 379-19) and five degrees of compaction (68, 74, 80, 86 and 92 %), with four repetitions, totaling 100 experimental units. The following variables were evaluated in the aboveground biomass: plant height, number of leaves, diameter of the orthotropic branch, fresh mass of leaves and stem, leaf area, gas exchange, and chlorophyll a and b index; in the roots: length, surface area, volume, diameter of fine and coarse roots, fresh and dry mass of roots, as well as anatomical characteristics. Results showed that soil with degrees of compaction above 80 % negatively affected the variables evaluated. Catuaí Vermelho 144 presented the worst performance regardless of the degree of compaction, while Arara and MGS Paraíso 2 showed the best performance under the evaluated compaction degrees. Anatomical structure of the roots was modified with soil compaction, and no differences were observed among cultivars.
  • Imagem de Miniatura
    Item
    Load-bearing capacity and critical water content of the coffee plantation soil with management in full sun and shaded
    (Sociedade Brasileira de Ciência do Solo, 2022-09-12) Lacerda, Kasé Santos; Vargas, Rafaela Carvalho; Ribeiro, Kleber Mariano; Dias Junior, Moacir de Souza; Ribeiro, Kátia Daniela; Abreu, Dorotéo de
    New management practices applied to coffee crops may influence the soil’s capacity to tolerate vertical stresses. This paper aimed to evaluate the influence of two coffee crop management systems on the soil load-bearing capacity and critical soil water content to agricultural machinery traffic. This study was performed in the experimental area of the Federal Institute of the Southeast of Minas Gerais - Rio Pomba college, in Rio Pomba city, Minas Gerais, Brazil. Dystrophic Red-Yellow Oxisol (Latossolo Vermelho-Amarelo distrófico) (LVA7) with clayed texture predominating in the experimental unit. Undisturbed soil samples were collected from layers of 0.00-0.03, 0.12-0.15 and 0.27-0.30 m, randomly, in the center of the interrows of coffee plants (Coffea arabica L.) in monoculture plots under traditional management (in full sun) and in the plots of coffee plants intercropped with gliricidia (Gliricidia sepium) (shaded) to estimate pre-consolidation pressures, through uniaxial compression tests and adjustment of soil load-bearing capacity models. The average and maximum normal stresses applied to the soil and the vertical stress distribution of three agricultural tractors used in mechanized farming operations were estimated, and the critical soil water content to the traffic of these tractors was determined for both treatments, aiding in the decision-making process regarding additional compaction risks in the area. Cultivation of gliricidia in consortium with coffee did not influence the soil load-bearing capacity. The soil layer of 0.12-0.15 m was the most vulnerable to vertical stresses in both treatments. Agricultural tractors Agrale 4100, MF 265 and MF 275 presented values of vertical stresses of 335.76, 200.24 and 245.55 kPa, respectively, and the soil water content for the traffic of agricultural machines without plastic deformation was higher in the coffee plants in full sun for all studied depths.
  • Imagem de Miniatura
    Item
    Soil chemical properties and nutrition of conilon coffee fertilized with molybdenum and nitrogen
    (Sociedade Brasileira de Ciência do Solo, 2021-11-22) Rosado, Thiago Lopes; Freitas, Marta Simone Mendonça; Carvalho, Almy Junior Cordeiro de; Gontijo, Ivoney; Pires, André Assis; Vieira, Henrique Duarte; Barcellos, Ronildo
    Molybdenum (Mo) availability is strongly affected by soil pH, which determines the dynamics of electrical charges and the adsorption of molybdate. This study evaluated the effects of nitrogen (N) and Mo application on the chemical properties of a Latossolo Amarelo (Oxisol) and in Coffea canephora nutrition and productivity throughout two productive cycles under field conditions. The experiment was conducted from June 2018 to May 2020. The experimental design used was in randomized blocks, in a 2 × 5 factorial scheme, the first factor being the absence and presence (4 kg ha-1 yr-1) of molybdic fertilization and the second factor was the N dose (300, 500, 700, 900, and 1,100 kg ha-1 yr-1). At the end of each production cycle, soil samples were collected to evaluate the pH(H2O), pH(KCl), exchangeable aluminum, potential acidity, organic matter, and Mo, at layers of 0.00-0.20 and 0.20-0.40 m. Leaves were sampled from the coffee tree to determine Mo and N contents and the coffee beans were harvested to evaluate the yield of processed coffee. The results showed that urea has a high potential for soil acidification, influencing the values of exchangeable aluminum, potential acidity, and ∆pH, at layers of 0.00-0.20 and 0.20-0.40 m. The decrease in pH caused by increasing doses of N increased the density of positive electrical charges of the soil and reduced Mo content in the leaves of C. canephora by 67 %. The application of sodium molybdate via soil was efficient in providing Mo to Conilon coffee and provided a 3.7 % increase in the yield of processed coffee. Nevertheless, molybdic fertilization did not influence the Mo content in the soil in the evaluations carried out at the end of each production cycle.
  • Imagem de Miniatura
    Item
    Occurrence of arbuscular mycorrhizal fungi in leaf litter and roots of shaded coffee plantations under organic and conventional management
    (Sociedade Brasileira de Ciência do Solo, 2021) Díaz-Ariza, Lucía Ana; Rivera, Emma Lucía; Sánchez, Natalia
    Evidence of arbuscular mycorrhizal fungal colonization of mat litter in various ecosystems plus previous reports of external mycelium of those fungi and mycorrhizal roots in litter from coffee plants and shade trees on coffee plantations suggest that they have a relationship with closed direct nutrient cycling between organic matter and living roots. This relationship was first proposed more than 50 years ago. Mycorrhizal symbiosis in tropical crops is affected by agricultural management practices. This study aimed to assess the occurrence of arbuscular mycorrhizal fungi in leaf litter from three shaded Colombian coffee agroecosystems under organic and conventional management. One is managed chemically, one organically, and one with a combined use of organic and chemical inputs. Leaf litter and roots were collected from the three coffee plots at three decomposition stages. Each plot represented a distinct fertilization and tree dominance pattern different from the other two plots. Arbuscular mycorrhizal fungi were found in decomposing leaves. The chemically managed plot showed statistical differences (p<0.05) with respect to the other plots, it had the greatest amounts of arbuscular mycorrhizal fungal root colonization (48.76–70.51 %), litter colonization (36.2–69.91 %), external mycelium length (28.66–48.33 m g-1), and spore number (451.27–681.2 spores in 20 g of dry soil). In contrast, conditions on the combined management coffee plot results in smaller means of the variables evaluated. Arbuscular mycorrhizal fungal root colonization and nitrogen content of leaf litter varied among the decomposition stages (p<0.05). Litter quality of different tree species may have influenced colonization of plant matter within each plot. We found evidence of typical structures of arbuscular mycorrhizal fungi within and among decomposing leaf litter and roots growing into the mat litter in tropical agroecosystems. This supports the thought that these fungi have a role in carbon and nutrient recycling, which are influenced by agricultural management practices and plant population composition.
  • Imagem de Miniatura
    Item
    Structural quality and load-bearing capacity of an Ultisol (Argissolo Vermelho amarelo) in mechanized coffee areas with different deployment times
    (Sociedade Brasileira de Ciência do Solo, 2020) Sandoval, Fábio Henrique Barbosa; Souza, Zigomar Menezes de; Lima, Elizeu de Souza; Silva, Reginaldo Barbosa da; Oliveira, Ingrid Nehmi de; Esteban, Diego Alexander Aguilera; Lovera, Lenon Henrique
    The mechanized management systems used in Brazilian coffee plantations generate heavy machine traffic and lead to the application of loads on the soil that affect the soil structure and lead to widespread compaction. This study aimed to evaluate the influence of mechanized operations on coffee plantations with different deployment times on the soil structural quality of an Ultisol, based on its soil physical properties and soil load-bearing capacity. The experiment was carried out in Muzambinho, São Paulo State, Southeast Brazil, in coffee plantations (Coffee arabica L.) with 3, 16, and 32 years of service. In each area, corresponding to the coffee plantation’s establishment period, soil samples were collected in the planting row (R), under the coffee canopy (UCC), and inter-row center (IRC) at the layers of 0.00-0.10, 0.10-0.20, and 0.20-0.40 m to evaluate soil penetration resistance, bulk density, porosity, wet aggregate stability, and preconsolidation pressure, to model soil load-bearing capacity. The deployment time of the coffee crop was a decisive factor in reducing the deterioration of the soil structure in the row, which was confirmed by better structural quality in the plantations with 16 and 32 years of establishment. Irrespective of crop deployment time, the effects of intensive machinery traffic on the coffee crop in the middle between the rows and in the area under the canopy are similar, resulting in high soil compaction, reflected in soil penetration resistance, soil bulk density, macroporosity, and load-bearing capacity. The longer the deployment time of the coffee cultivation areas (32 and 16 years), the higher the stability of the soil aggregates, and the larger the mean aggregate size.
  • Imagem de Miniatura
    Item
    Polyol-ester impact on boron foliar absorption and remobilization in cotton and coffee trees
    (Sociedade Brasileira de Ciência do Solo, 2020) Rosolem, Ciro Antonio; Almeida, Danilo Silva; Cruz, Caio Vilela
    Foliar fertilization can be recommended to treat boron (B) deficiency in coffee and cotton. Considering that B foliar fertilizers with polyol-boron complexes can affect B uptake and mobility differently within the plant, and coffee and cotton have different cuticles and stomata density, a differential response would be expected. We aimed to study the foliar application of boric acid combined with sorbitol on B uptake and translocation in cotton and coffee. Green-house grown plants received B as boric acid and a sorbitol-monoethanolamine complex and were sampled up to 96 h after application. Boron absorption was fast, reaching 60 and 80 % in cotton and coffee 96 h after application, respectively. Uptake rates and total B absorption were similar for the fertilizers. The proportion of B taken up by coffee is greater than by cotton likely because of the greater stomata density in coffee and less likely due to the higher amount of wax in cotton cuticle. Boron remobilization is higher in coffee as compared with cotton. Sorbitol seems to increase B transport in the transpiratory stream of cotton, but impairs remobilization in the phloem since B translocation to roots is decreased in both cotton and coffee.
  • Imagem de Miniatura
    Item
    Soil phosphorus dynamics and availability and irrigated coffee yield
    (Sociedade Brasileira de Ciência do Solo, 2011-03) Reis, Thiago Henrique Pereira; Guimarães, Paulo Tácito Gontijo; Furtini Neto, Antônio Eduardo; Guerra, Antônio Fernando; Curi, Nilton
    Research data have demonstrated that the P demand of coffee (Coffea arabica L.) is similar to that of short-cycle crops. In this context, the objective of this study was to evaluate the influence of annual P fertilization on the soil P status by the quantification of labile, moderately labile, low-labile, and total P fractions, associating them to coffee yield. The experiment was installed in a typical dystrophic Red Latosol (Oxisol) cultivated with irrigated coffee annually fertilized with triple superphosphate at rates of 0, 50, 100, 200, and 400 kg ha -1 P2O5. Phosphorus fractions were determined in two soil layers: 0–10 and 10–20 cm. The P leaf contents and coffee yield in 2008 were also evaluated. The irrigated coffee responded to phosphate fertilization in the production phase with gains of up to 138 % in coffee yield by the application of 400 kg ha -1 P2O5. Coffee leaf P contents increased with P applications and stabilized around 1.98 g kg -1 , at rates of 270 kg ha -1 P2O5 and higher. Soil P application caused, in general, an increase in bioavailable P fractions, which constitute the main soil P reservoir.
  • Imagem de Miniatura
    Item
    Spatial variability of soil chemical properties after coffee tree removal
    (Sociedade Brasileira de Ciência do Solo, 2009-09) Vieira, Sidney Rosa; Guedes Filho, Osvaldo; Chiba, Márcio Koiti; Cantarella, Heitor
    Assessing the spatial variability of soil chemical properties has become an important aspect of soil management strategies with a view to higher crop yields with minimal environmental degradation. This study was carried out at the Centro Experimental of the Instituto Agronomico, in Campinas, São Paulo, Brazil. The aim was to characterize the spatial variability of chemical properties of a Rhodic Hapludox on a recently bulldozer-cleaned area after over 30 years of coffee cultivation. Soil samples were collected in a 20 x 20 m grid with 36 sampling points across a 1 ha area in the layers 0.0–0.2 and 0.2–0.4 m to measure the following chemical properties: pH, organic matter, K + , P, Ca 2+ , Mg 2+ , potential acidity, NH 4 -N, and NO 3 -N. Descriptive statistics were applied to assess the central tendency and dispersion moments. Geostatistical methods were applied to evaluate and to model the spatial variability of variables by calculating semivariograms and kriging interpolation. Spatial dependence patterns defined by spherical model adjusted semivariograms were made for all cited soil properties. Moderate to strong degrees of spatial dependence were found between 31 and 60 m. It was still possible to map soil spatial variability properties in the layers 0–20 cm and 20–40 cm after plant removal with bulldozers.