Revista Brasileira de Ciência do Solo

URI permanente para esta coleçãohttps://thoth.dti.ufv.br/handle/123456789/9883

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 2 de 2
  • Imagem de Miniatura
    Item
    Land Use and Changes in Soil Morphology and Physical-Chemical Properties in Southern Amazon
    (Sociedade Brasileira de Ciência do Solo, 2017) Melo, Vander Freitas; Orrutéa, Alessandro Góis; Motta, Antônio Carlos Vargas; Testoni, Samara Alves
    Many Amazonian farmers use the slash-and-burn method rather than fertilization for crop production. The aim of the present study was to evaluate changes in the morphological, physical, and chemical properties of naturally fertile Inceptisols after conversion from native forest to different uses in southern Amazonia, Brazil. Land covered by dense native forest (NF) was split into four areas of 1.0 ha each. Three areas were slashed and burned and then cultivated for 11 years with coffee (CO), secondary forest (SF), and pasture (PA). Four soil profiles were sampled in each treatment (four uses × four replicates). The mean value distribution of each physical and chemical analysis was determined for different depths, and standard error bars were placed to display significant differences among treatments. Results showed that morphology and physical properties were negatively affected after the establishment of PA and CO: a reduction in the thickness of the A horizon and in aggregate stability, a decrease in total porosity and macroporosity, and an increase in aggregate size and bulk density. Soil bulk density (SBD), geometric mean diameter of water-stable aggregates (GMD), and microporosity (SMi) were higher in soil under pasture as a consequence of more intense soil surface compaction. Native and secondary forests were the only treatments that showed granular structures in the A horizon. Significant differences between native forest and secondary forest were mainly found in the top soil layer for total porosity (STP) (NF>SF), macroporosity (SMa) (NF>SF), SBD (NF>SF) and GMD (SF>NF). Phosphorus contents in the A horizon increased from 6.2 to 21.5 mg kg-1 in PA and to 27.2 mg kg-1 in SF. Soil under coffee cultivation exhibited the lowest levels of Ca2+ and sum of bases in surface horizons. In all slash-and-burn areas there was a reduction in the C stock (Mg ha-1) of the A horizon: native forest 6.3, secondary forest 4.5, pasture 3.3, and coffee 3.1.
  • Imagem de Miniatura
    Item
    Physiological and morphological responses of Arabica coffee cultivars to soil compaction
    (Sociedade Brasileira de Ciência do Solo, 2023-12-22) Ramos, Elísia Gomes; Barros, Vanessa Maria de Souza; Miranda, José Danizete Brás; Silva, Laís Maria Rodrigues; Neves, Júlio Cesar Lima; Meira, Renata Maria Strozi Alves; Oliveira, Teogenes Senna de
    Compaction caused by mechanization affects soil quality and, consequently, the development of crops. This study aimed to evaluate the effect of different degrees of soil compaction on the physiology, morphology, and anatomy of different coffee cultivars in a controlled environment. The experiment was carried out in a greenhouse, with randomized block design in a 5 × 5 factorial arrangement, with five coffee cultivars (Arara, Catuaí Amarelo IAC 62, Catuaí Vermelho 144, MGS Paraíso 2 and Mundo Novo IAC 379-19) and five degrees of compaction (68, 74, 80, 86 and 92 %), with four repetitions, totaling 100 experimental units. The following variables were evaluated in the aboveground biomass: plant height, number of leaves, diameter of the orthotropic branch, fresh mass of leaves and stem, leaf area, gas exchange, and chlorophyll a and b index; in the roots: length, surface area, volume, diameter of fine and coarse roots, fresh and dry mass of roots, as well as anatomical characteristics. Results showed that soil with degrees of compaction above 80 % negatively affected the variables evaluated. Catuaí Vermelho 144 presented the worst performance regardless of the degree of compaction, while Arara and MGS Paraíso 2 showed the best performance under the evaluated compaction degrees. Anatomical structure of the roots was modified with soil compaction, and no differences were observed among cultivars.