Revista Ceres

URI permanente para esta coleçãohttps://thoth.dti.ufv.br/handle/123456789/9884

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 2 de 2
  • Imagem de Miniatura
    Item
    Nitrate leaching through climatologic water balance in a fertigated coffee plantation
    (Universidade Federal de Viçosa, 2013-11) Bortolotto, Rafael Pivotto; Bruno, Isabeli Pereira; Dourado-Neto, Durval; Timm, Luís Carlos; Silva, Adilson Nunes da; Reichardt, Klaus
    Nitrate losses from soil profiles by leaching should preferentially be monitored during high rainfall events and during irrigation when fertilizer nitrogen applications are elevated. Using a climatologic water balance, based on the models of Thornthwaite and Penman Monteith for potential evapotranspiration, drainage soil water fluxes below the root zone were estimated in a fertigated coffee crop. Soil solution extraction at the depth of 1 m allowed the calculation of nitrate leaching. The average nitrate concentration in soil solution for plots that received nitrogen by fertigation at a rate of 400 kg ha -1 , was 5.42 mg L -1 , surpassing the limit of the Brazilian legislation of 10.0 mg L -1 , only during one month. For plots receiving 800 kg ha -1 of nitrogen, the average was 25.01 mg L -1 , 2.5 times higher than the above- mentioned limit. This information indicates that nitrogen rates higher than 400 kg ha -1 are potentially polluting the ground water. Yearly nitrate amounts of leaching were 24.2 and 153.0 kg ha -1 for the nitrogen rates of 400 and 800 kg ha - 1 , respectively. The six times higher loss indicates a cost/benefit problem for coffee fertigations above 400 kg ha -1 .
  • Imagem de Miniatura
    Item
    Nitrogen fertilizer (15 N) leaching in a central pivot fertigated coffee crop
    (Universidade Federal de Viçosa, 2012-07) Bortolotto, Rafael Pivotto; Bruno, Isabeli Pereira; Reichardt, Klaus; Timm, Luís Carlos; Amado, Telmo Jorge Carneiro; Ferreira, Ademir de Oliveira
    Nitrogen has a complex dynamics in the soil-plant-atmosphere system. N fertilizers are subject to chemical and microbial transformations in soils that can result in significant losses. Considering the cost of fertilizers, the adoption of good management practices like fertigation could improve the N use efficiency by crops. Water balances (WB) were applied to evaluate fertilizer N leaching using 15 N labeled urea in west Bahia, Brazil. Three scenarios (2008/2009) were established: i) rainfall + irrigation the full year, ii) rainfall only; and iii) rainfall + irrigation only in the dry season. The water excess was considered equal to the deep drainage for the very flat area (runoff = 0) with a water table located several meters below soil surface (capillary rise = 0). The control volume for water balance calculations was the 0 – 1 m soil layer, considering that it involves the active root system. The water drained below 1 m was used to estimate fertilizer N leaching losses. WB calculations used the mathematic model of Penman-Monteith for evapotranspiration, considering the crop coefficient equal to unity. The high N application rate associated to the high rainfall plus irrigation was found to be the main cause for leaching, which values were 14.7 and 104.5 kg ha -1 for the rates 400 and 800 kg ha - 1 of N, corresponding to 3.7 and 13.1 % of the applied fertilizer, respectively.