Pesquisa Agropecuária Brasileira

URI permanente para esta coleçãohttps://thoth.dti.ufv.br/handle/123456789/9886

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 4 de 4
  • Imagem de Miniatura
    Item
    Multitemporal variables for the mapping of coffee cultivation areas
    (Empresa Brasileira de Pesquisa Agropecuária - Embrapa, 2019) Souza, Carolina Gusmão; Arantes, Tássia Borges; Carvalho, Luis Marcelo Tavares de; Aguiar, Polyanne
    The objective of this work was to propose a new methodology for mapping coffee cropping areas that includes multitemporal data as input parameters in the classification process, by using the Landsat TM NDVI time series, together with an object-oriented classification approach. The algorithm BFAST was used to analyze coffee, pasture, and native vegetation temporal profiles, allied to a geographic object-based image analysis (GEOBIA) for mapping. The following multitemporal variables derived from the R package greenbrown were used for classification: mean, trend, and seasonality. The results showed that coffee, pasture, and native vegetation have different temporal behaviors, which corroborates the use of these data as input variables for mapping. The classifications using temporal variables, associated with spectral data, achieved high-global accuracy rates with 93% hit. When using Only temporal data, ratings also showed a hit percentage above 80% accuracy. Data derived from Landsat TM time series are efficient for mapping coffee cropping areas, reducing confusion between targets and making the classification process more accurate, contributing to a correct characterization and mapping of objects derived from a RapidEye image, with a high spatial solution.
  • Imagem de Miniatura
    Item
    Análise espectral e temporal da cultura do café em imagens Landsat
    (Empresa Brasileira de Pesquisa Agropecuária - Embrapa, 2004-03) Moreira, Mauricio Alves; Adami, Marcos; Rudorff, Bernardo Friedrich Theodor
    A definição da resposta espectral da cultura do café é uma das etapas na identificação de lavouras cafeeiras em imagens de satélites de sensoriamento remoto, para fins de mapeamento e estimativa de área plantada. O objetivo deste trabalho foi avaliar o potencial das imagens adquiridas pelos satélites da série Landsat, no mapeamento da cultura do café para a previsão de safras. Foi feita uma análise temporal do comportamento espectral de lavouras de café-formação e café-produção por meio de imagens livres de nuvens adquiridas nos anos de 1999 e 2001. Também foi analisado o comportamento espectral das classes pastagem e mata, que compõem os alvos de maior ocupação na área de estudo. As imagens do período seco foram mais eficientes no mapeamento de lavouras de café-formação e café-produção. As imagens da banda 4 dos dois sensores apresen- taram melhor diferenciação espectral entre café e os demais alvos da cena. A reflectância do café-produção apresentou grande variabilidade entre lavouras, que pode ser atribuída à idade, espaçamento de plantas, cultivar, indicando a necessidade de trabalho em campo para a correta identificação das lavouras de café nas imagens Landsat.
  • Imagem de Miniatura
    Item
    Comparação de dados dos satélites Ikonos-II e Landsat/ETM+ no estudo de áreas cafeeiras
    (Empresa Brasileira de Pesquisa Agropecuária - Embrapa, 2006-04) Ramirez, Gláucia Miranda; Zullo Junior, Jurandir; Assad, Eduardo Delgado; Pinto, Hilton Silveira
    O objetivo deste trabalho foi avaliar o impacto do aumento da resolução espacial e radiométrica da imagem pancromática do Ikonos-II na identificação de plantios de café (Coffea arabica), em comparação com as imagens do Landsat/ETM+. A área de estudo está localizada no Município de Pedregulho, SP, onde foram selecionados 50 talhões com plantios de café, e foram levantados dados referentes à altura, idade, espaçamento e variedade de cada talhão. As imagens permitiram a identificação de talhões com características diferentes em campo, tendo-se destacado a imagem do Ikonos-II, que apresentou melhor desempenho. Para os talhões com características iguais em campo, as imagens analisadas não se mostraram eficientes, independentemente do satélite utilizado. As correções atmosféricas e radiométricas, na imagem do Ikonos-II, não proporcionaram ganho efetivo nas análises realizadas. A maioria dos talhões identificados na imagem do Ikonos-II pode ser localizada na imagem do Landsat/ETM+ (68%). A correlação significativa entre a banda 4 do Landsat/ETM+ e o canal pancromático do Ikonos-II indica uma forma de ligação entre as imagens dos dois satélites.
  • Imagem de Miniatura
    Item
    Estimativa da produtividade de café com base em um modelo agrometeorológico‐espectral
    (Empresa Brasileira de Pesquisa Agropecuária - Embrapa, 2010-12) Rosa, Viviane Gomes Cardoso da; Moreira, Maurício Alves; Rudorff, Bernardo Friedrich Theodor; Adami, Marcos
    O objetivo deste trabalho foi avaliar um modelo agrometeorológico‐espectral, para estimar a produtividade de cafezais. Utilizaram-se imagens do sensor MODIS e dados agrometeorológicos do modelo regional de previsão do tempo (ETA), para fornecer as variáveis de entrada para o modelo agrometeorológico‐espectral da mesorregião geográfica sul/sudoeste do estado de Minas Gerais nos anos‐agrícolas de 2003/2004 a 2007/2008. A variável espectral de entrada do modelo agrometeorológico‐espectral, índice de área foliar (IAF), usada no cálculo da produtividade máxima, foi estimada com o índice de vegetação por diferença normalizada (NDVI), obtido de imagens MODIS. Outras variáveis de entrada no modelo foram: dados meteorológicos gerados pelo modelo ETA e a capacidade de água disponível no solo. Ao comparar a produtividade média estimada pelo modelo com a fornecida oficialmente pelo IBGE, as diferenças relativas obtidas em escala regional foram de: 0,4, 3,0, 5,3, 1,5 e 8,5% para os anos agrícolas 2003/2004, 2004/2005, 2005/2006, 2006/2007 e 2007/2008, respectivamente. O modelo agrometeorólogico‐espectral, que tem como base o modelo de Doorenbos & Kassan, foi tão eficaz para estimar a produtividade dos cafezais quanto o modelo oficial do IBGE. Além disso, foi possível espacializar a quebra de produtividade e prever 80% da produtividade final na primeira quinzena de fevereiro, antes do início da colheita.