Teses e Dissertações
URI permanente desta comunidadehttps://thoth.dti.ufv.br/handle/123456789/2
Navegar
1 resultados
Resultados da Pesquisa
Item Artrópodes da classe Diplopoda: qualidade e atributos do solo e decomposição de resíduos de cafeeiro(Universidade Federal do Espírito Santo, 2017-02-23) Silva, Victor Maurício da; Passos, Renato RibeiroThe millipedes (Diplopoda Class) are organisms of the edaphic macrofauna important for the decomposition of organic residues deposited in soil and can also be used as indicators of soil quality. However, studies with these organisms in tropical regions are incipient. In this context, this thesis is structured in four chapters. The Chapter 1 refers to a study of laboratory that evaluated the effect of increasing population densities of the tropical millipede Glyphiulus granulatus on aggregation, enzymatic activity and soil P fractions. The Chapters 2 and 3 were also developed under laboratory conditions, and both used the tropical millipede species Rhinocricus botocudus. In Chapter 2 was used also the earthworm Eisenia andrei to evaluate the maturity of a mixture of cattle manure and coffee plants residues (leaves and branches < 5 mm in diameter) (1: 1, v: v) along of 120 days of incubation. In Chapter 3 was study the potential of R. botocudus in the degradation and maturity of coffee plant residues. In Chapter 4 the effect of vegetation cover on epigeic macrofauna and millipede communities was discussed through relationships with soil and litter attributes. The Chapter 1 showed that the increase in population densities of G. granulatus optimized the formation of soil aggregates between 2.00-4.76 mm and reduced the aggregates between 1.00-2.00 mm. In addition, the activity of β-glycosidase soil enzyme was increased at the highest densities of G. granulatus (6 and 12 millipedes per microcosm). In Chapter 2, through infrared analysis in humic and fulvic acids, were demonstrated reductions in aliphatic organic molecules and increases in aromatic groups during 120 days of incubation of the organic residues. Regardless of the presence of R. botocudus millipedes, these changes were more pronounced with the presence of E. andrei earthworms, which demonstrates that this earthworm species optimized the maturity of the cattle manure + coffee residue. The Chapter 3 demonstrated that in the end of 120 days of the incubation of coffee plant residues, the treatment with R. botocudus compared to the control had lower values of cellulose (366 and 290 g kg -1 in the control and with millipede, respectively), and lower values of celulose/lignina ratio (0.92 and 0.63 in the control and with millipede, respectively). These results highlight the potential of this millipede species for the degradation of structural components of coffee plant residues. In the dry period, the insertion of the Australian cedar plants (Toona ciliata)11 with coffee plants (Coffea canephora) improved the diversity of the millipede community compared to the coffee plants monoculture system, and presented values for diversity of Shannon (H’) of 0.46 and 0.25, respectivThe millipedes (Diplopoda Class) are organisms of the edaphic macrofauna important for the decomposition of organic residues deposited in soil and can also be used as indicators of soil quality. However, studies with these organisms in tropical regions are incipient. In this context, this thesis is structured in four chapters. The Chapter 1 refers to a study of laboratory that evaluated the effect of increasing population densities of the tropical millipede Glyphiulus granulatus on aggregation, enzymatic activity and soil P fractions. The Chapters 2 and 3 were also developed under laboratory conditions, and both used the tropical millipede species Rhinocricus botocudus. In Chapter 2 was used also the earthworm Eisenia andrei to evaluate the maturity of a mixture of cattle manure and coffee plants residues (leaves and branches < 5 mm in diameter) (1: 1, v: v) along of 120 days of incubation. In Chapter 3 was study the potential of R. botocudus in the degradation and maturity of coffee plant residues. In Chapter 4 the effect of vegetation cover on epigeic macrofauna and millipede communities was discussed through relationships with soil and litter attributes. The Chapter 1 showed that the increase in population densities of G. granulatus optimized the formation of soil aggregates between 2.00-4.76 mm and reduced the aggregates between 1.00-2.00 mm. In addition, the activity of β-glycosidase soil enzyme was increased at the highest densities of G. granulatus (6 and 12 millipedes per microcosm). In Chapter 2, through infrared analysis in humic and fulvic acids, were demonstrated reductions in aliphatic organic molecules and increases in aromatic groups during 120 days of incubation of the organic residues. Regardless of the presence of R. botocudus millipedes, these changes were more pronounced with the presence of E. andrei earthworms, which demonstrates that this earthworm species optimized the maturity of the cattle manure + coffee residue. The Chapter 3 demonstrated that in the end of 120 days of the incubation of coffee plant residues, the treatment with R. botocudus compared to the control had lower values of cellulose (366 and 290 g kg -1 in the control and with millipede, respectively), and lower values of celulose/lignina ratio (0.92 and 0.63 in the control and with millipede, respectively). These results highlight the potential of this millipede species for the degradation of structural components of coffee plant residues. In the dry period, the insertion of the Australian cedar plants ely. On the other hand, in all agroecosystems there were reductions in the diversity of millipedes between seasonal periods, and the fragment of native Atlantic forest used as the study reference demonstrated the maintenance of diversity between periods. These results reinforces the low support capacity of the edaphic communities in the studied agroecosystems.