Periódicos

URI permanente desta comunidadehttps://thoth.dti.ufv.br/handle/123456789/3352

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 2 de 2
  • Imagem de Miniatura
    Item
    Comparison between climatological and field water balances for a coffee crop
    (Escola Superior de Agricultura "Luiz de Queiroz", 2007-05) Bruno, Isabeli Pereira; Silva, Adriana Lúcia da; Reichardt, Klaus; Dourado-Neto, Durval; Bacchi, Osny Oliveira Santos; Volpe, Clóvis Alberto
    The use of climatological water balances in substitution to complete water balances directly measured in the field allows a more practical crop management, since the climatological water balances are based on data monitored as a routine. This study makes a comparison between these methods in terms of estimatives of evapotranspiration, soil water storage, soil available water, runoff losses, and drainage below root zone, during a two year period, taking as an example a coffee crop of the variety Catuaí, three to five years old. Climatological water balances based on the estimation of the evapotranspiration through the methods of Thornthwaite and Penman-Monteith, can reasonably substitute field measured balances, however underestimating the above mentioned variables.
  • Imagem de Miniatura
    Item
    Variability of water balance components in a coffee crop in Brazil
    (Escola Superior de Agricultura "Luiz de Queiroz", 2006-03) Silva, Adriana Lúcia da; Roveratti, Renato; Reichardt, Klaus; Bacchi, Osny Oliveira Santos; Timm, Luis Carlos; Bruno, Isabeli Pereira; Oliveira, Julio César Martins; Dourado Neto, Durval
    Establishing field water balances is difficult and costly, the variability of their components being the major problem to obtain reliable results. This component variability is presented herein for a coffee crop grown in the Southern Hemisphere, on a tropical soil with 10% slope. It was observed that: rainfall has to be measured with an appropriate number of replicates; irrigation can introduce great variability into calculations; evapotranspiration, calculated as a remainder of the water balance equation, has exceedingly high coefficients of variation; the soil water storage component is the major contributor in error propagation calculations to estimate evapotranspiration; and that runoff can be satisfactorily controlled on the 10% slope through crop management practices.