Periódicos
URI permanente desta comunidadehttps://thoth.dti.ufv.br/handle/123456789/3352
Navegar
2 resultados
Resultados da Pesquisa
Item Kinetic modeling of water sorption by roasted and ground coffee(Editora da Universidade Estadual de Maringá - EDUEM, 2017-07) Baptestini, Fernanda Machado; Corrêa, Paulo Cesar; Oliveira, Gabriel Henrique Horta de; Cecon, Paulo Roberto; Soares, Nilda de Fátima FerreiraThe objective of this study was to model the kinetics of water sorption in roasted and ground coffee. Crude Arabica coffee beans with an initial moisture content of 0.1234 kg w kg dm-1 were used. These beans were roasted to a medium roast level (SCCA # 55) and ground at three particle sizes: coarse (1.19 mm), medium (0.84 mm) and fine (0.59 mm). To obtain the water sorption isotherms and the isosteric heat, different conditions of temperature and relative humidity were analyzed using the dynamic method at 25oC (0.50, 0.60, 0.70, and 0.80 of RH) and 30°C (0.30, 0.40, 0.50, 0.60, 0.70, and 0.80 of RH) and using the static method at 25oC (0.332 and 0.438 of RH). The GAB model best represented the hygroscopic equilibrium of roasted coffee at every particle size. Isosteric heat of sorption for the fine particle size increased with increments of equilibrium moisture content, indicating a strong bond energy between water molecules and the product components. The Gibbs free energy decreased with the increase in equilibrium moisture content and with temperature.Item Particle size and roasting on water sorption in conilon coffee during storage(Editora UFLA, 2016-04) Corrêa, Paulo Cesar; Oliveira, Gabriel Henrique Horta de; Oliveira, Ana Paula Lelis Rodrigues de; Vargas-Elías, Guillermo Asdrúbal; Baptestini, Fernanda MachadoThe aim of this work was to evaluate alterations on the water sorption of coffee due to the effect of roast, grind and storage in two temperatures (10 and 30 oC) during 180 days. Crude grain coffee (Coffea canephora) with average initial moisture content of 12.61 % (d.b.) was used. Grain was roasted at two levels: medium light (ML) and moderately dark (MD). Afterwards, grain was processed in three different particle sizes: fine (0.59 mm), medium (0.84 mm) and coarse (1.19 mm), besides the whole coffee lot. Samples prepared were then stored in two temperatures (10 and 30 oC). These were analyzed during six months, at five distinct times (0, 30, 60, 120 and 180 days) regarding moisture content and water activity. Furthermore, mathematical modeling and thermodynamic properties acquisition of the coffee moisture adsorption process were accomplished. A split plot design was used, in which plots consisted of storage period and split-plots consisted of a 2 x 4 x 2 factorial (two roasting degrees, four particle sizes and two storage temperatures), with five repetitions.It was concluded thatparticle size did not significantly affectedmoisture content of coffee, independently of roast degree; Sigma-Copace model best represented hygroscopic equilibrium for sorption of roasted coffee; with moisture content reduction, an increase of differential enthalpy and entropy of sorption and Gibbs free energy occurs.