Periódicos

URI permanente desta comunidadehttps://thoth.dti.ufv.br/handle/123456789/3352

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 2 de 2
  • Imagem de Miniatura
    Item
    Vegetative growth of Conilon coffee plants under two water conditions in the Atlantic region of Bahia State, Brazil
    (Editora da Universidade Estadual de Maringá - EDUEM, 2016-10) Covre, André Monzoli; Partelli, Fábio Luiz; Bonomo, Robson; Braun, Heder; Ronchi, Cláudio Pagotto
    Extreme temperatures and persistent water stress stand out among the main factors that restrict the vegetative growth and productivity of Coffea canephora. The objective of this study was to evaluate the vegetative growth of orthotropic and plagiotropic branches of C. canephora under non-irrigated and irrigated conditions, and their correlation with climatic factors in the Atlantic region of Bahia State, Brazil. The experiment was established with two treatments (non-irrigated and irrigated) in a completely random design with 14 replicates. One orthotropic and four plagiotropic branches were labelled on each plant. During the two-year experimental period, the growth of these branches was evaluated at 14-day intervals. Two harvests were performed to obtain productivity data. In summary, it was confirmed that irrigation resulted in an increased productivity of Conilon coffee in the Atlantic region of Bahia, Brazil. The growth rate of the orthotropic and plagiotropic branches was higher in irrigated plants. The growth rate of the plagiotropic branches was limited by the fruit load capacity. The growth rate of C. canephora branches was not limited by the minimum average air temperature in the Atlantic region of Bahia, Brazil.
  • Imagem de Miniatura
    Item
    Wet bulb and Conilon coffee root distribution under drip irrigation
    (Editora UFLA, 2018-01) Souza, Joabe Martins de; Reis, Edvaldo Fialho dos; Bonomo, Robson; Garcia, Giovanni de Oliveira
    Knowledge of the wet bulb and the root system of the Conilon coffee plant is highly important for the correct management of irrigation. Therefore, the aim of this work was to characterize the wet bulb and Conilon coffee root distribution under drip irrigation. The experiment was conducted in the city of São Mateus, ES, Brazil with five replications of a completely randomized design of a 4 x 6 split-plot scheme, which represents four points located according to plant location and six depths. Two points were located in the plant line and two points between lines. For row spacing, we used a split-plot scheme 5 x 6 with five points in relation with plant location and six depths with five replications. The coffee roots were analysed by volume, superficial area, length and diameter. The wet bulb was measured with tubes located in six points near the plants with two points in the plant row (between two plants) and five points between rows. The measurements were conducted at four depth ranges with three replications. The wet bulb reached a depth of between 0.40 and 0.50 m, providing an excess of water in depth, evidencing the importance of this characterization for the irrigation management of drip-irrigated Conilon coffee. The depth of the radicular system for better irrigation management efficiency of drip-irrigated coffee is 0.30 m, exhibiting 67.4% of root volume and 68.0% of surface area.