Periódicos

URI permanente desta comunidadehttps://thoth.dti.ufv.br/handle/123456789/3352

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 4 de 4
  • Imagem de Miniatura
    Item
    Roles of arbuscular mycorrhizal fungi on acclimatization of clones of Coffea arabica L. produced by somatic embryogenesis
    (Editora UFLA, 2020) Fonseca, Arley José; Tassone, Guilherme Augusto Teixeira; Carneiro, Marco Aurélio Carbone; Carvalho, Gladyston Rodrigues; Carvalho, Carlos Henrique Siqueira; Botelho, Cesar Elias
    The production of Coffea arabica L. clone seedlings through the somatic embryogenesis technique is one of the alternatives of greatest demand for coffee producers. However, clones can face difficulties related to acclimatization carried out under greenhouse conditions, which can increase the production costs. A tested alternative with promising results is inoculation with arbuscular mycorrhizal fungi (AMF) during the seedling acclimatization process. Thus, this study aimed to promote the improvement of the seedling production process through somatic embryogenesis associated with inoculation with AMF. For the production of the clones, seedlings were used in the phase when they presented four pairs of leaves (Clone 1 “Fruiting red Catucaí” and Clone 2 “Acauã”), using “somatic embryogenesis” bioreactors, followed by inoculation with Rhizophagus clarus, Gigaspora margarita and Acaulospora mellea, a mixture of R. clarus and G. margarita and a mixture of R. clarus, G. margarita and A. mellea. After six months, agronomic parameters, leaf nutrient contents and root mycorrhizal colonization were evaluated. The studied clones behaved differently when inoculated with AMFs. Clone 1 showed the best development in the greenhouse, which was determined by the agronomic parameters. Thus, Clone 1 is indicated for the production of vigorous seedlings when associated with inoculation with AMFs.
  • Imagem de Miniatura
    Item
    High rates of agricultural gypsum affect the arbuscular mycorrhiza fungal community and coffee yield
    (Instituto Agronômico (IAC), 2020) Cogo, Franciane Diniz; Saggin Júnior, Orivaldo José; Guimarães, Paulo Tácito Gontijo; Siqueira, José Oswaldo; Carneiro, Marco Aurélio Carbone
    High rates of agricultural gypsum, above the recommended levels, have been used on a regular basis to deepen plant roots and to alleviate recurrent water stress in Cerrado areas. However, very little is known about the consequences of this practice to arbuscular mycorrhizal fungi (AMF). Therefore, the objective of this study was to evaluate whether or not applying high rates of agricultural gypsum affects the mycorrhizal fungi community, glomalin content and coffee yield. The study rates were: 0; 3.5; 7.0; 14 and 56 t·ha-1 of agricultural gypsum applied in the planting row of the coffee plantation on top of the previous recommended gypsum application. Samples were collected for analysis at the depths of 0-20, 20-40 and 40-60 cm at the end of dry and rainy seasons of the year. In the coffee plantation, 16 AMF species were identified. Gigaspora sp. and Glomus macrocarpum were dominant in all situations. The rate of 7 t·ha-1 favored greater diversity of AMF species and the rate of 56 t·ha-1 reduced AMF diversity and mycorrhizal colonization in deeper layers. In the rainy season, there was a linear decrease of easily extractable glomalin-related soil protein (EE-GRSP) levels as the agricultural gypsum rate was increased. Coffee yield was reduced with the highest gypsum rate (56 t·ha-1), even though the coffee plantation had higher phosphorus contents in beans and leaves. This may have resulted from a number of reasons, including a negative effect on the AMF community.
  • Imagem de Miniatura
    Item
    Biochemical parameters of an Oxisol submitted to high doses of gypsum in the coffee culture
    (Editora UFLA, 2020) Naves, Andrêssa de Paula; Silva, Aline Oliveira; Barbosa, Marisângela Viana; Pinto, Flávio Araújo; Santos, Jessé Valentim dos; Saggin Junior, Orivaldo José; Guimarães, Paulo Tácito Gontijo; Carneiro, Marco Aurélio Carbone
    The objective of this study was to determine the influence of increasing doses of agricultural gypsum on the quality of the soil biochemical parameters in coffee cultivation (Coffea arabica L.) over two climatic seasons in the Brazilian Cerrado. Soil samples were collected in two seasons (dry and rainy season), at 0.00 – 0.10 m depth of an Oxisol, submitted to doses 0 (GSA); 3.5 (G3.5); 7.0 (G7.0) and 14 (G14) t ha-1 of agricultural gypsum in the coffee planting line. The biochemical parameters evaluated were: total organic carbon (TOC); microbial biomass carbon (MBC); soil basal respiration (SBR); absolute enzymatic activities [Urease, acid phosphatase, hydrolysis of fluorescein diacetate (FDA)], and enzymatic activity per unit of MBC. The significant effect (p ≤ 0.05) of gypsum doses was observed for MBC and SBR, which were higher in the treatment with G7.0 application. TOC, the enzymatic activities of Phosphatase and the FDA showed no differences between treatments. On the other hand, the specific enzymatic activities by MBC were used to describe the differences between the doses of gypsum applied, generally with greater activity in treatments G7.0 and G14. The accumulated coffee productivity was higher in G14 treatment. The results presented confirmed that the biochemical parameters of the soil are key in the evaluation of changes in soil use, and that the increase in gypsum favors activity and microbial biomass.
  • Imagem de Miniatura
    Item
    Arbuscular mycorrhizal fungus on the initial growth and nutrition of Coffea arabica L. genotypes
    (Editora UFLA, 2019-08) Fonseca, Arley José; Freitas, Ana Flávia de; Carvalho, Gladyston Rodrigues; Carneiro, Marco Aurélio Carbone; Vilela, Diego Júnior Martins; Fassio, Larissa de Oliveira
    The benefits of mycorrhization occur with the growth of hyphae in colonized roots by promoting an increase of the contact surface which improves the initial growth due to a better absorption of water and nutrients. The objective was to evaluate the effect of arbuscular mycorrhizal fungus Rhizophagus clarus inoculation over the initial development and nutritional response of six genotypes of Coffea arabica L. Six genotypes of Coffea arabica L. were used (MGS Aranas, H29-1-8-5, Red Catuai IAC 144, IPR 100, Catigua MG2, Paraíso H 419-1) and with arbuscular mycorrhizal fungus - AMF: Rhizophagus clarus and without the application of the fungus. For the production of coffee seedlings, seeds were placed to germinate in plastic trays with sterile sand. After germination, 10 seedlings of each genotype were transferred to 0.120 dm 3 polyethylene tubes with substrate. Then the inoculation of five seedlings of each genotype with the AMF R. Clarus was performed. When the seedlings with and without inoculation with the AMF presented six pairs of leaves they were transplanted to 13-liter pots containing soil (Dystrophic red-yellow latosol). The inoculation favored the initial growth of the coffee plants and its intensity varied according to the genotypes. The genotypes H 29-1-8-5, Red Catuai IAC 144 and Catigua MG 2 were the ones that presented higher shoot dry mass, root dry mass, total dry mass and accumulation of P, in relation to MGS aranãs, Paraiso H 419-1 and IPR 100, so they are the most promising to be inoculated with the arbuscular mycorrhizal fungus.