Periódicos

URI permanente desta comunidadehttps://thoth.dti.ufv.br/handle/123456789/3352

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 3 de 3
  • Imagem de Miniatura
    Item
    Steps of cryopreservation of coffee seeds: physiological responses and antioxidant systems
    (Universidade Federal de Santa Maria, 2023-08-21) Souza, Ana Cristina de; Costa, Marina Chagas; Figueiredo, Madeleine Alves de; Pereira, Cristiane Carvalho; Coelho, Stefânia Vilas Boas; Vilela, Ana Luiza Oliveira; Pereira, Diego de Souza; Rosa, Sttela Dellyzete Veiga Franco da
    The cryopreservation of plant germplasm at ultralow temperatures is an alternative technique for the long-term storage of seeds of the genus Coffea sp. However, for this technique to be successful, cell integrity must be maintained at all stages of the process on the basis of scientific research. The present study investigated validated cryopreservation protocols for Coffea arabica L. seeds and evaluate the effects on the physiological and biochemical characteristics of the seeds at each stage of the process. Seeds were dried on silica gel or with saturated saline solution, precooled or not in a biofreezer, immersed in nitrogen, and reheated in a water bath. After each of these steps, the physiological and biochemical quality of the seeds was determined. Pre-cooling is a step that can be dispensed with in the cryopreservation of Coffea arabica seeds, direct immersion in liquid nitrogen being more indicated. Coffea arabica L. seeds tolerate cryopreservation after rapid drying in silica gel up to water contents of 17 or 20% (wb), with greater survival at 17%. The enzyme activities of catalase, polyphenol oxidase and peroxidase are indicators of the quality of C. arabica L. seeds subjected to cryopreservation.
  • Imagem de Miniatura
    Item
    Protein profile in arabica coffee seeds in electrophoresis gel: importance of freeze-drying
    (Associação Brasileira de Tecnologia de Sementes - ABRATES, 2022-05-13) Fávaris, Nathália Aparecida Bragança; Rosa, Sttela Dellyzete Veiga Franco da; Figueiredo, Madeleine Alves de; Coelho, Stefânia Vilas Boas; Vilela, Ana Luiza de Oliveira; Padilha, Lilian
    Coffee seeds are sensitive to desiccation and are used or stored with different moisture content values, which may affect the results of quality assessment. The aim of this study was to evaluate the changes in protein profile in electrophoresis gel in coffee seeds with different moisture content values under freeze-drying and without freeze-drying. Two lots of arabica coffee seeds were used, one of newly-harvested seeds and another of stored seeds. The seeds were dried to the moisture content values of 12, 15, 20, 25, 30, 35, and 40%. The physiological quality of the seeds was assessed through the germination test, electrical conductivity, and the profiles of the enzymes SOD, CAT, PO, GOT, MDH, and EST and of heat-resistant proteins. In general, there is an effect on expression of these enzymes in accordance with the presence of free water in the seeds. Moist seeds have little to no enzyme expression. The freeze-drying process allows preservation of coffee seed quality and does not change the functionality of the enzymes studied. The isoenzyme profiles of the antioxidant process in arabica coffee seeds are affected by the initial moisture content of the seeds. The freeze-drying process of the seeds ensures greater sensitivity in detection of the expression of these isoenzymes.
  • Imagem de Miniatura
    Item
    Ultrastructural damage in coffee seeds exposed to drying and to subzero (°C) temperatures
    (Editora UFLA, 2020) Coelho, Stefânia Vilas Boas; Rosa, Sttela Dellyzete Veiga Franco da; Clemente, Aline da Consolação Sampaio; Lacerda, Laura Nardelli Castanheira; Silva, Luciano Coutinho; Fantazzini, Tatiana Botelho; Ribeiro, Fernando Augusto Sales; Castro, Elisa de Melo
    During drying and freezing, protective mechanisms act to maintain seed physiological quality. Some of these mechanisms contribute to the integrity of cell membranes. The damage caused to cell membranes due to cell stress can be seen in ultrastructural studies, comparing these results to those of physiological evaluation. The aim of this study was to investigate ultrastructural changes in endosperm cells of coffee seeds brought about by drying and by exposure to low temperatures. Seeds of Coffea arabica were dried in silica gel to moisture contents of 40, 20, and 5 % (wb) and brought to equilibrium at temperatures of 10, -20, and -86 oC. Germination, vigor, and tetrazolium tests were performed for evaluation of seed physiological quality. Ultrastructural damage was analyzed by scanning electron microscopy. Coffee seeds with 40% moisture content have whole, swollen, and expanded cells, with a filled lumen and without signs of damage. The physiological and ultrastructural quality of seeds exposed to below zero temperatures with 40% moisture content is compromised. They have null germination and empty cells, indicating leakage of cell content. Drying of coffee seeds leads to uniform contraction of inner cell content. Drying of coffee seeds to 5% moisture content leads to intense contraction of cell volume, with physiological and ultrastructural damage.