Periódicos
URI permanente desta comunidadehttps://thoth.dti.ufv.br/handle/123456789/3352
Navegar
2 resultados
Resultados da Pesquisa
Item Definition of management zones in coffee production fields based on apparent soil electrical conductivity(Escola Superior de Agricultura "Luiz de Queiroz", 2012-05) Valente, Domingos Sárvio Magalhães; Queiroz, Daniel Marçal de; Pinto, Francisco de Assis de Carvalho; Santos, Nerilson Terra; Santos, Fábio LúcioFertilizer application at variable rates requires dense sampling to determine the resulting field spatial variability. Defining management zones is a technique that facilitates the variable-rate application of agricultural inputs. The apparent electrical conductivity of the soil is an important factor in explaining the variability of soil physical-chemical properties. Thus, the objective of this study was to define management zones for coffee (Coffea Arabica L.) production fields based on spatial variability of the apparent electrical conductivity of the soil. The resistiv- ity method was used to measure the apparent soil electrical conductivity. Soil samples were collected to measure the chemical and physical soil properties. The maps of spatial variability were generated using ordinary kriging method. The fuzzy k-means algorithm was used to delimit the management zones. To analyze the agreement between the management zones and the soil properties, the kappa coefficients were calculated. The best results were obtained for the management zones defined using the apparent electrical conductivity of the soil and the digital elevation model. In this case, the kappa coefficient was 0.45 for potassium, which is an element that is associated with quality coffee. The other variable that had a high kappa coefficient was remaining phosphorous; the coefficient obtained was 0.49. The remaining phosphorus is an important parameter for determining which fertilizers and soil types to study.Item Estudos de casos de classificação de áreas cultivadas com café por meio de descritores de textura(Editora UFLA, 2016-10) Silveira, Lucas Silva da; Valente, Domingos Sárvio Magalhães; Pinto, Francisco de Assis Carvalho; Santos, Fábio LúcioO objetivo neste trabalho foi desenvolver um sistema para identificar áreas cultivadas com café utilizando Redes Neurais Artificiais (RNAs) tendo como variáveis de entrada os descritores de textura de Haralick. Utilizou-se o algoritmo de treinamento do tipo retro-propagação do erro (backpropagation) e o método de Levenberg-Marquardt. Foram realizados dois estudos de casos: no primeiro, as RNAs foram desenvolvidas para discriminar entre as classes café, mata, água, solo exposto, pastagem e área urbana; no segundo, as RNAs foram desenvolvidas para classificar as plantações de café de acordo com a idade e com a data de recepa. Para a avaliação do desempenho de classificação das RNAs empregou-se um mapa de referência de uso e ocupação do solo elaborado por meio do Sistema de Informações Geográficas. A concordância entre os mapas temáticos, classificados pela RNA, e o mapa de referência foi avaliada pelo coeficiente Kappa. Verificou-se que o coeficiente Kappa para discriminar a região cafeeira das outras classes temáticas foi de 0,652 no primeiro estudo de caso, desempenho considerado muito bom. Para classificar os plantios de café em função da idade e data de recepa o índice Kappa foi variável (0,675 a 0,4783), sendo considerado muito bom para a fazenda Itatiaia e razoável para a fazenda Pedra Redonda.