Periódicos

URI permanente desta comunidadehttps://thoth.dti.ufv.br/handle/123456789/3352

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 4 de 4
  • Imagem de Miniatura
    Item
    Multitemporal variables for the mapping of coffee cultivation areas
    (Empresa Brasileira de Pesquisa Agropecuária - Embrapa, 2019) Souza, Carolina Gusmão; Arantes, Tássia Borges; Carvalho, Luis Marcelo Tavares de; Aguiar, Polyanne
    The objective of this work was to propose a new methodology for mapping coffee cropping areas that includes multitemporal data as input parameters in the classification process, by using the Landsat TM NDVI time series, together with an object-oriented classification approach. The algorithm BFAST was used to analyze coffee, pasture, and native vegetation temporal profiles, allied to a geographic object-based image analysis (GEOBIA) for mapping. The following multitemporal variables derived from the R package greenbrown were used for classification: mean, trend, and seasonality. The results showed that coffee, pasture, and native vegetation have different temporal behaviors, which corroborates the use of these data as input variables for mapping. The classifications using temporal variables, associated with spectral data, achieved high-global accuracy rates with 93% hit. When using Only temporal data, ratings also showed a hit percentage above 80% accuracy. Data derived from Landsat TM time series are efficient for mapping coffee cropping areas, reducing confusion between targets and making the classification process more accurate, contributing to a correct characterization and mapping of objects derived from a RapidEye image, with a high spatial solution.
  • Imagem de Miniatura
    Item
    Relationship between coffee crop productivity and vegetation indexes derived from oli / landsat-8 sensor data with and without topographic correction
    (Associação Brasileira de Engenharia Agrícola, 2018-05) Nogueira, Sulimar M. C.; Moreira, Maurício A.; Volpato, Margarete M. L.
    The reflectance values of a coffee crop are influenced by several factors such as planting direction, crop spacing, time of the year, plant age and topography which reduces the accuracy of the estimates derived from remote sensing data. In this context were evaluated the relationships between coffee productivity and values of NDVI, SAVI and NDWI vegetation indexes with and without topographic reflectance correction for different coffee phenological phases for the crop years 2013/2014 (low productivity) and 2014/2015 (high productivity). The evaluations were made through the standard deviation of vegetation indices (VIs), linear relationship between the cosine factor and the VIs and between VIs and coffee productivity. The best phenological phases of coffee to determine productivity from spectral indexes were the stages of dormancy and flowering. The results indicated that the NDVI was the best index to estimate the productivity of coffee trees with coefficient of determination (R2) that ranged from 0.58 to 0.90. There was an increase in R2 between productivity and NDVI with topographic correction in the dormancy phase in the year of low productivity; between productivity and NDVI with topographic correction in the flowering phase in the year of high productivity; and between productivity and SAVI and NDWI with topographic corrections in the flowering phase in the year of high productivity.
  • Imagem de Miniatura
    Item
    Modis images for agrometeorological monitoring of coffee areas
    (Editora UFLA, 2013-04) Volpato, Margarete Marin Lordelo; Vieira, Tatiana Grossi Chquiloff; Alves, Helena Maria Ramos; Santos, Walbert Júnior Reis dos
    Agrometeorological monitoring of coffee lands has conventionally been performed in the field using data from land-based meteorological stations and field surveys to observe crop conditions. More recent studies use satellite images, which assess large areas at lower costs. The Moderate Resolution Imaging Spectroradiometer (MODIS) sensor of the Earth satellite provides free images with high temporal resolution and vegetation specific products, such as the MOD13, which provides the Normalized Difference Vegetation Index (NDVI) processed in advanced. The objective of this study was to evaluate the relation between the NDVI spectral vegetation index and the meteorological and water balance variables of coffee lands of the south of Minas Gerais in order to obtain statistical models of this relationship. The study area is located in the municipality of Três Pontas, Minas Gerais, Brazil. The statistical models obtained demonstrate a significant negative correlation between the NDVI and water deficit. NDVI values under 70% may represent a water deficit in the coffee plants. The models developed in this study could be used in the agrometeorological monitoring of coffee lands in the south of Minas Gerais.
  • Imagem de Miniatura
    Item
    Imagens do sensor modis para monitoramento agrometeorológico de áreas cafeeiras
    (Editora UFLA, 2013-04) Volpato, Margarete Marin Lordelo; Vieira, Tatiana Grossi Chquiloff; Alves, Helena Maria Ramos; Santos, Walbert Júnior Reis dos
    O monitoramento agrometeorológico de áreas cafeeiras tem sido realizado convencionalmente em campo utilizando-se dados de estações meteorológicas terrestres e visitas à lavoura para se observar seu desenvolvimento. Estudos mais recentes utilizam imagens de satélite, que permitem avaliar grandes áreas a custos menores. O sensor Moderate Resolution Imaging Spectroradiometer (MODIS) do satélite Terra oferece gratuitamente imagens com alta resolução temporal e produtos voltados especialmente para vegetação como o MOD13, que fornece o índice de vegetação Normalized Difference Vegetation Index (NDVI) previamente processado. Objetivou-se, no presente estudo, avaliar a relação entre o índice de vegetação espectral NDVI e as variáveis meteorológicas e do balanço hídrico, em áreas cafeeiras do sul de Minas Gerais, visando à obtenção de modelos estatísticos dessa relação. A área de estudo localiza-se no município de Três Pontas, estado de Minas Gerais, Brasil. Os modelos estatísticos desenvolvidos demonstram a correlação significativa negativa entre o NDVI e déficit hídrico. Valores de NDVI menores que 70% podem indicar a deficiência hídrica de cafeeiros. Os modelos desenvolvidos no presente estudo poderão ser usados no monitoramento agrometeorológico de lavouras cafeeiras na região sul de Minas Gerais.