Coffee Science
URI permanente desta comunidadehttps://thoth.dti.ufv.br/handle/123456789/3355
Navegar
1 resultados
Resultados da Pesquisa
Item Aplicação de redes neurais artificiais na classificação de áreas cafeeiras em Machado-MG(Editora UFLA, 2013-01) Andrade, Lívia Naiara de; Vieira, Tatiana Grossi Chquiloff; Lacerda, Wilian Soares; Volpato, Margarete Marin Lordelo; Davis Junior, Clodoveu AugustoA cafeicultura é atividade de fundamental importância na região sul de Minas Gerais e técnicas de estimativa da área plantada, visando previsões de safra confiáveis, estão sendo intensamente pesquisadas. Apresenta-se,no presente estudo, uma aplicação de Redes Neurais Artificiais (RNA) para a classificação automática de dados de sensoriamento remoto, objetivando identificar áreas cafeeiras da região de Machado, MG. A metodologia para desenvolvimento da aplicação da RNA foi dividida em três etapas: pré-processamento dos dados; treinamento e uso da RNA; e análise dos resultados. Na primeira etapa foi realizada a divisão da área em estudo em duas partes (uma com relevo mais movimentado e outra com relevo menos movimentado), isso porque a região apresenta relevo suave ondulado a forte ondulado, o que acarreta maior dificuldade do mapeamento automático do uso da terra a partir de imagens de satélite. Foram também criadas máscaras na rede de drenagem e área urbana. Na segunda etapa, diversas RNAs foram treinadas a partir de várias amostras de imagens representativas das classes de interesse e foi feita a classificação do restante da imagem utilizando a melhor RNA obtida. A terceira etapa consistiu na análise e validação dos resultados, realizando um cruzamento entre o mapa classificado visualmente e o mapa classificado pela Rede Neural escolhida. Utilizou-se o índice Kappa para avaliar o desempenho da RNA, uma vez que o uso desse coeficiente é satisfatório na avaliação da precisão de uma classificação temática. O resultado obtido foi superior aos resultados encontrados na literatura, com um índice Kappa de 0,558 para o relevo mais movimentado e 0,602 para o relevo menos movimentado.