Coffee Science

URI permanente desta comunidadehttps://thoth.dti.ufv.br/handle/123456789/3355

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 8 de 8
  • Imagem de Miniatura
    Item
    Agronomic, anatomic and physiological characterization of Coffea arabica L. genotypes on irrigated system in the Central Cerrado
    (Universidade Federal de Lavras, 2022-12-29) Santos, Cyntia Stephânia dos; Matos, Nagla Maria Sampaio de; Rezende, Tiago Teruel; Mauri, Janaína; Rodrigues, Gustavo Costa; Veiga, Adriano Delly; Bartholo, Gabriel Ferreira; Carvalho, Milene Alves de Figueiredo
    Due to climatic conditions and the possibility of using machineries, coffee has a potential to achieve high yields with reduced costs, in the biome of Cerrado. Leaf anatomy and physiology can help in the identification of more adapted cultivars to a given environmental condition. The objective is to verify the behavior of Coffea arabica L. genotypes in the Cerrado of the Brazilian Central Plateau through anatomical and physiological characterization and yield. Ten coffee genotypes from the Active Germplasm Bank located in the municipality of Planaltina, Distrito Federal, were evaluated. The genotypes evaluated were: Araponga MG1, Catiguá MG2, Catiguá MG3 P23, Catiguá MG3 P7, Catiguá MG3 P51, Catiguá MG3 P, Catuaí Amarelo IAC 62, Catuaí Vermelho IAC 15, Paraíso MG1 and Topázio MG 1190. The phenotypic characteristics evaluated were the thickness of: adaxial cuticle surface, adaxial and abaxial epidermis surfaces, the palisade and spongy parenchyma, the mesophyll layer, the phloem, number and diameter of the xylem vessels, stomatal density, relationship between the polar and equatorial diameter of the stoma, specific leaf area, stomatal conductance, transpiration rate, net photosynthetic rate, water use efficiency, intercellular carbon concentration and yield. Genotypes of Coffea arabica L. presented a distinction between the characteristics evaluated when grown under climatic conditions of the Brazilian Central Plateau Cerrado, highlighting the variations in the behavior and distinguished adaptation in this environment. The Araponga MG1 genotype stood out for anatomical and physiological characteristics of higher values, such as net photosynthetic rate, stomatal conductance, intercellular carbon concentration, abaxial and adaxial epidermis thickness, stomatal density and number of xylem vessels. The genotype Paraíso MG1 stands out for higher grain productivity. The genotype Catuaí Vermelho IAC 15 stands out for anatomical and physiological characteristics such as higher stomatal density, greater number of xylem vessels and greater efficiency in water use, resulting in improved productivity.
  • Imagem de Miniatura
    Item
    Water retainer polymer in coffee plants deployment under different levels of irrigation
    (Editora UFLA, 2021) Resende, Thales Barcelos; Souza, Victor Hugo Silva; Castanheira, Dalyse Toledo; Carvalho, Milene Alves de Figueiredo; Guimarães, Rubens José
    The use of water-retaining polymers may be a feasible alternative in regions with low water availability, as they has enhance the performance of coffee plants with more favorable anatomical characteristics to make physiological processes more efficient. However, the advantages of such use have been scarcely reported. Here, we studied the feasibility of using a water-retaining polymer to optimize irrigation water use during the establishment of a coffee plantation. A randomized block design was used in a factorial scheme (4 × 2) with three replications for a total of 24 experimental plots, each consisting of four pots, with one plant per unit. The experiment was installed in a greenhouse at the Coffee Science Department of the Universidade Federal de Lavras, Minas Gerais, Brazil, with four levels of irrigation (25%, 50%, 75%, and 100% of soil water at field capacity), with or without addition of the water-retaining polymer. Growth variables evaluated included: plant height, stem diameter, number of leaves, shoot and root dry weights, root volume and area. Additionally, gas exchange, leaf water potential, and leaf anatomy were analyzed. The use of water-retaining polymer during establishment of the coffee plantation ensured sufficient water supply, thus guaranteeing plant anatomical and physiological functionality and, consequently, a healthy, vigorous growth.
  • Imagem de Miniatura
    Item
    Leaf anatomy, physiology and vegetative growth of fertigated Coffee arabica L. trees after exposure to pruning
    (Editora UFLA, 2021) Soares, Daiane dos Santos; Silva, Elisângela Aparecida da; Carvalho, Milene Alves de Figueiredo; Pereira, Fernanda Aparecida Castro; Guimarães, Rubens José
    In coffee plants, fertigation can be an alternative way to minimize the negative effects exerted by drought and maximize fertilizer use efficiency. However, the fertilization recommendations for fertigated coffee trees are still not very specific, and the recommendations for rainfed crops are used. In addition, little is known about the nutritional requirements for fertigated coffee trees that have undergone the low recepa pruning treatment. Thus, the objective of this study was to evaluate the effects of different levels of nitrogen (N), phosphorus (P), and potassium (K) fertilizers on leaf anatomy, physiology, and veg etative growth of fertigated coffee trees (Coffea arabica L.) that have been under the low recepa pruning treatment. During the first five years of growth, the cultivar Topázio MG-1190 of the coffee crop received 10, 40, 70, 100, 130, and 160% of the fertilization levels recommended for the rainfed coffee crop. After this period, the crop was exposed to low recepa pruning. It was concluded that different doses of N, P, and K fertilizers modified the internal structure of coffee plant leaves, as well as physiological responses and plant growth; there was stronger vegetative growth, sharper leaf blade, greater thickness of spongy parenchyma, larger phloem area, and higher xylem relative hydraulic conductivity as the N, P, and K fertilizer levels in fertigated coffee (Coffea arabica L.) plants, which received the low recepa pruning treatment, increased. This knowledge can be used as a solid basis for main fertilization recommendations for fertigated coffee trees after exposure to the low recepa pruning treatment.
  • Imagem de Miniatura
    Item
    Coffee genotypes morphophysiological adaptation under coffee leaf rust biotic stress
    (Editora UFLA, 2021) Viana, Mariana Thereza Rodrigues; Azevedo, Harianna Paula Alves de; Pereira, Fernanda Aparecida Castro; Carvalho, Milene Alves de Figueiredo; Guimarães, Rubens José
    The identification of morphophysiological traits responsible for a better plant behavior when infected is useful for cultivar selection, and become crucial for breeding. We investigated the morphophysiological behavior of coffee genotypes before and after inoculation with the pathogen Hemileia vastatrix, causal agent of coffee rust. With multivariate techniques we identified the characteristics that most contribute to total genetic divergence of the geno types. Ten genotypes of Coffea arabica from the Germplasm Bank of Coffee from Minas Gerais were sown in a nursery and then take to a greenhouse with controlled temperature and humidity. After one month of acclimatization, the artificial inoculation with the fungus H. vastatrix was carried out. The anatomical and physiological evaluations were performed 1 day before inoculation and 160 days after inoculation. When the first symptom emerged, plants were evaluated according to a descriptive scale for coffee rust. We observed significant differences in rust severity and ostiole opening between genotypes. Different groups were formed by the K-means method, based on morphophysiological characteristics. This shows that genetic variability exists between the coffee genotypes evaluated before and after inoculation with the pathogen. The most important characteristics that contributed to the total genetic divergence were xylem vessel diameter and stomatal conductance. In conclusion, inoculation with H. vastatrix caused a change in coffee geno types based on morphophysiological characteristics.
  • Imagem de Miniatura
    Item
    Agronomic techniques for mitigating the effects of water restriction on coffee crops
    (Editora UFLA, 2019-01) Castanheira, Dalyse Toledo; Barcelos, Thales Resende; Guimarães, Rubens José; Carvalho, Milene Alves de Figueiredo; Rezende, Tiago Teruel; Bastos, Isadora dos Santos; Cruvinel, Arthur Henrique
    Water restriction significantly affects coffee (Coffea arabica L.) production. The study of a few agronomic techniques that optimizes water use can generate technologies for mitigating the effects of climatic variations on coffee crops. The aim in this study was to indicate agronomic techniques that mitigate the effects of water restriction on coffee crops. For this end, we analyzed the morphophysiological changes in coffee plants cultivated in a greenhouse with different types of fertilizers and soil conditioners and under two levels of irrigation. The evaluations were performed 130 days after planting, assessing the morphological and physiological characteristics of the plants. We also quantified soil moisture in the different treatments. The water restriction expressively hindered plant growth. The use of controlled release fertilizers and soil conditioners, especially coffee husk, is indicated for mitigating water restriction in coffee crops.
  • Imagem de Miniatura
    Item
    Sucrose in detoxification of coffee plants whit glyphosate drift
    (Editora UFLA, 2019-01) Alecrim, Ademilson de Oliveira; Guimarães, Rubens José; Castanheira, Dalyse Toledo; Rezende, Tiago Teruel; Carvalho, Milene Alves de Figueiredo; Voltolini, Giovani Belutti
    The weed control in coffee plants has great importance, as they compete for light, water and nutrients. The chemical control is the most used, emphasizing the glyphosate, however, when applied, drift can occur and consequently cause injuries to coffee. Many farmers use the sucrose application with the objective to reverse the damage caused by the herbicide drift, even without scientific basis to justify such action. The objective of this study was to evaluate the effect of the sucrose application on the detoxification of coffee plants in the implantation phase with glyphosate drift. The experiment was carried out in a greenhouse, using a randomized block design, arranged in a 3 x 3 factorial scheme with 2 additional treatments, using 3 sucrose doses (2, 4 and 8%) with 3 application times (1, 24 and 168 hours after intoxication with 10% of the commercial glyphosate dose) with an additional one in which the plants were not intoxicated and not treated with sucrose and another only with plants intoxicated by glyphosate. After 75 days performing the experiment, growth, physiological and anatomical characteristics were evaluated. The application of sucrose in the reversal of intoxication of growth variables (height, leaf area number of leaves, shoot dry weight and dry weight of the root system) was not efficient. The objective of this study was to evaluate the effect of the sucrose application on the detoxification of coffee plants in the implantation phase with glyphosate drift. For the physiological variables the application of 2% sucrose, one hour after glyphosate intoxication was the most efficient treatment.
  • Imagem de Miniatura
    Item
    Big Coffee VL.: Seed desiccation tolerance, sieve classification, and physiological quality
    (Editora UFLA, 2018-10) Souza, Ana Cristina de; Rosa, Sttela Dellyzete Veiga Franco da; Vilela, Amanda Lima; Figueiredo, Madeleine Alves de; Vilela, Ana Luiza de Oliveira; Stéphano Filho, Ricardo; Carvalho, Milene Alves de Figueiredo
    A coffee plant producing large fruit, seeds, and leaves in relation to conventional coffee plants, possibly generated by genetic mutation, was named Big Coffee VL. Seeds of this coffee plant were classified by size and used to establish the crop, whose progenies were designated as Big Coffee VL. large, Big Coffee VL. medium, and Big Coffee VL. small. The aim in this study was to investigate desiccation tolerance, together with size classification, and evaluate the physiological quality of the seeds of this progeny. Seeds of each type of Big Coffee VL. and of the cultivar Topázio were collected. High moisture seeds and seeds dried to 11% moisture content were evaluated to assess desiccation tolerance. Dried seeds of each Big Coffee VL. progeny and of the Topázio cultivar were classified by size in sieve testing using oblong screens for separation of peaberry seeds, and circular sieves from 22 to 12 for separation of flat seeds. All seeds were subjected to physiological evaluation through the germination test and determination of seedling dry matter. A completely randomized experimental design (CRD) was used; results were subjected to analysis of variance and means compared by the Scott-Knott test. Big Coffee VL. seeds tolerate desiccation to moisture content of 11% wet basis. Seeds of the Topázio cultivar have better physiological performance than seeds of the Big Coffee VL progenies. The bigger the seeds of Big Coffee VL., the better their physiological performance, exhibiting greater seedling dry matter.
  • Imagem de Miniatura
    Item
    Characterization of coffee cultivars leaf rust-resistant subjected to framework pruning
    (Editora UFLA, 2018-01) Reis, Estevam Antônio Chagas; Freitas, Tainah; Carvalho, Milene Alves de Figueiredo; Mendes, Antônio Nazareno Guimarães; Rezende, Tiago Teruel; Carvalho, João Paulo Felicori
    The goal of our work was to evaluate physiological and agronomic traits, as well as the relationship between these traits in coffee cultivars coming from a germplasm supposedly resistant to leaf rust, and their response to framework pruning. The experiment was conducted at the Federal University of Lavras in randomized blocks with three replicates, with spacing of 3.5 x 0.7 m and plots of 12 plants. An amount of 25 coffee cultivars was evaluated, from which 23 were considered resistant and two susceptible to leaf rust. Traits analyzed were the plagiotropic branch length and number of nodes, net photosynthetic rate, transpiration rate, water use efficiency, fluorescence and chlorophyll index, leaf area index, leaf rust incidence and yield. Catucaí Amarelo 20/15 cv 479, Araponga MG1 and Tupi IAC 1669-33 cultivars show highly responsive to framework pruning. These cultivars have high yield associated to high net photosynthetic rate, water use efficiency and low transpiration rate. Moreover, the last two cultivars show a low incidence of leaf rust. The Acauã cultivar has a good response to framework pruning, showing high yield associated to lower incidence of leaf rust. Catucaí Vermelho 785/15 cultivar is not responsive to framework pruning because show lower yield, high incidence of leaf rust, low vegetative growth and low water use efficiency.