Coffee Science

URI permanente desta comunidadehttps://thoth.dti.ufv.br/handle/123456789/3355

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 2 de 2
  • Imagem de Miniatura
    Item
    Phialomyces macrosporus reduces Cercospora coffeicola survival on symptomatic coffee leaves
    (Editora UFLA, 2019-01) Laborde, Marie Caroline Ferreira; Botelho, Deila Magna dos Santos; Rodríguez, Gabriel Alfonso Alvarez; Resende, Mário Lúcio Vilela de; Queiroz, Marisa Vieira de; Batista, Aline Duarte; Cardoso, Patrícia Gomes; Pascholati, Sérgio Florentino; Gusmão, Luis Fernando Pascholati; Martins, Samuel Júlio; Medeiros, Flávio Henrique Vasconcelos de
    Brown eye spot is among the most important coffee diseases, it is caused by a necrotrophic fungal Cercospora coffeicola. Saprobe fungi have potential in reducing the survival of necrotrophic pathogens and can act through competition of nutrients, mycoparasitism, antibiosis and resistance induction. We have screened saprobe fungi for the ability to reduce C. coffeicola sporulation and viability and determined the possible mechanisms involved in the biocontrol. The selected saprobe fungus, Phialomyces macrosporus, reduced the germination of C. coffeicola conidia by 40%. P. macrosporus produced both volatile and non-volatile compounds that inhibited C. coffeicola growth, sporulation and viability. The production of antimicrobial substances was the main mode of action used by the saprobe fungi. Therefore, P. macrosporus is a promising biological agent for the integrated management of brown eye spot
  • Imagem de Miniatura
    Item
    Saprobic fungi as biocontrol agents of halo blight (Pseudomonas syringae pv. garcae) in coffee clones
    (Editora UFLA, 2018-07) Botrel, Dayana Alvarenga; Laborde, Marie Caroline Ferreira; Medeiros, Flávio Henrique Vasconcelos de; Resende, Mário Lúcio Vilela de; Ribeiro Júnio, Pedro Martins; Pascholati, Sérgio Florentino; Gusmão, Luís Fernando Pascholati
    Halo blight caused by Pseudomonas syringae pv. garcae is a limiting disease in coffee production. There are few efficient commercial products on the market to control this disease, and therefore, the prospection of different biocontrol agents is a promising alternative. The objectives in this study were (i) to select saprobic fungi with the potential to control halo blight in coffee clones, and (ii) to evaluate the contributions of induced resistance as control mechanisms. Plants were sprayed with Gonytrichum chlamydosporium, Phialomyces macrosporus, and Moorella speciosa 7 d before inoculation with Pseudomonas. syringae pv. garcae. The area under the halo blight progress curve (AUDPC) and plant growth parameters were evaluated. M. speciose and G. clamydosporium did not reduce the AUDPC and even reduced plant growth in none of the trails compared to the water control. P. macrosporus consistently reduced AUDPC by 42-72% and increased plant height by 40%. Thereafter, the contributions of induced resistance was evaluated for the P. macrosporus, selected as the most promising biocontrol agent.. In order to determine induced resistance, phenylalanine ammonia lyase (PAL), peroxidase (POX), and ascorbate peroxidase (APX) activity of plant leaves were measured at two time points after stress challenge. Enzyme activity evaluation demonstrated high activity of POX and PAL at seven days after treatment with the saprobe, and high APX activity after 14 days. The results of this study indicate that P. macrosporus has the potential to be used in the management of coffee halo blight in seedling production, and one mechanism likely involved is induced resistance.