Coffee Science

URI permanente desta comunidadehttps://thoth.dti.ufv.br/handle/123456789/3355

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 3 de 3
  • Imagem de Miniatura
    Item
    Mapeamento da cultura cafeeira por meio de classificação automática utilizando atributos espectrais, texturais e fator de iluminação
    (Editora UFLA, 2017-04) Marujo, Rennan de Freitas Bezerra; Moreira, Maurício Alves; Volpato, Margarete Marin Lordelo; Alves, Helena Maria Ramos
    O café, importante produto nas exportações brasileiras, necessita de constante monitoramento para que os sistemas de previsão de safras existentes sejam confiáveis. Imagens orbitais de média resolução espacial são ferramentas com grande potencial para mapeamento do uso do solo e identificação de culturas agrícolas. Nesta pesquisa, visando o mapeamento de áreas cafeeiras, avaliou-se o desempenho da classificação baseada em objetos, associada a técnicas de mineração de dados, aplicada em imagens OLI/Landsat-8. Foram feitas três classificações automáticas, a primeira constando exclusivamente atributos espectrais, a segunda acrescentando atributos texturais e a terceira, incluindo também classes de iluminação do terreno. Foram utilizadas seis imagens multiespectrais, datadas de três diferentes estádios fenológicos da cultura: frutificação, granação e repouso. A validação das classificações foi feita por meio do Método de Monte Carlo utilizando como referência mapas visualmente interpretados. As classificações feitas exclusivamente com atributos espectrais resultaram, para a classe café, exatidão média de 57%. Não houve estádio fenológico que proporcionasse maior exatidão à classe café, entretanto ao incluir os atributos texturais, a exatidão da classe café melhorou para 76%. Assim, observa-se que atributos texturais mostraram-se importantes para detecção automática de áreas cafeeiras.
  • Imagem de Miniatura
    Item
    Modis images for agrometeorological monitoring of coffee areas
    (Editora UFLA, 2013-04) Volpato, Margarete Marin Lordelo; Vieira, Tatiana Grossi Chquiloff; Alves, Helena Maria Ramos; Santos, Walbert Júnior Reis dos
    Agrometeorological monitoring of coffee lands has conventionally been performed in the field using data from land-based meteorological stations and field surveys to observe crop conditions. More recent studies use satellite images, which assess large areas at lower costs. The Moderate Resolution Imaging Spectroradiometer (MODIS) sensor of the Earth satellite provides free images with high temporal resolution and vegetation specific products, such as the MOD13, which provides the Normalized Difference Vegetation Index (NDVI) processed in advanced. The objective of this study was to evaluate the relation between the NDVI spectral vegetation index and the meteorological and water balance variables of coffee lands of the south of Minas Gerais in order to obtain statistical models of this relationship. The study area is located in the municipality of Três Pontas, Minas Gerais, Brazil. The statistical models obtained demonstrate a significant negative correlation between the NDVI and water deficit. NDVI values under 70% may represent a water deficit in the coffee plants. The models developed in this study could be used in the agrometeorological monitoring of coffee lands in the south of Minas Gerais.
  • Imagem de Miniatura
    Item
    Imagens do sensor modis para monitoramento agrometeorológico de áreas cafeeiras
    (Editora UFLA, 2013-04) Volpato, Margarete Marin Lordelo; Vieira, Tatiana Grossi Chquiloff; Alves, Helena Maria Ramos; Santos, Walbert Júnior Reis dos
    O monitoramento agrometeorológico de áreas cafeeiras tem sido realizado convencionalmente em campo utilizando-se dados de estações meteorológicas terrestres e visitas à lavoura para se observar seu desenvolvimento. Estudos mais recentes utilizam imagens de satélite, que permitem avaliar grandes áreas a custos menores. O sensor Moderate Resolution Imaging Spectroradiometer (MODIS) do satélite Terra oferece gratuitamente imagens com alta resolução temporal e produtos voltados especialmente para vegetação como o MOD13, que fornece o índice de vegetação Normalized Difference Vegetation Index (NDVI) previamente processado. Objetivou-se, no presente estudo, avaliar a relação entre o índice de vegetação espectral NDVI e as variáveis meteorológicas e do balanço hídrico, em áreas cafeeiras do sul de Minas Gerais, visando à obtenção de modelos estatísticos dessa relação. A área de estudo localiza-se no município de Três Pontas, estado de Minas Gerais, Brasil. Os modelos estatísticos desenvolvidos demonstram a correlação significativa negativa entre o NDVI e déficit hídrico. Valores de NDVI menores que 70% podem indicar a deficiência hídrica de cafeeiros. Os modelos desenvolvidos no presente estudo poderão ser usados no monitoramento agrometeorológico de lavouras cafeeiras na região sul de Minas Gerais.