Coffee Science

URI permanente desta comunidadehttps://thoth.dti.ufv.br/handle/123456789/3355

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 3 de 3
  • Imagem de Miniatura
    Item
    Classification, physicochemical, soil fertility, and relationship to Coffee robusta yield in soil map unit selected
    (Editora UFLA, 2020) Marbun, Posma; Nasution, Zulkifli; Hanum, Hamidah; Karim, Abubakar
    The research was aimed to classify, characterize the physicochemical properties, determine the fertility of the soil, and to obtain the relationship of soil fertility on the character yield for Coffee robusta in the 10 units of the soil map (SMUs) selected. This research was conducted in Silima Pungga-Pungga sub-District, Dairi District, North Sumatra Province, Indonesia from July 2014 to June 2017. This research was conducted by overlay the maps, classifying soil profiles, characterizing soil, soil fertility assessing, and regression analysis of soil fertility with the yield for Coffee robusta using IBM SPSS Statistics v.20 software. The result showed the ten from 18 SMUs selected for Coffee robusta had the highest area in sequentially, namely SMU 11, 14, and 1. Based on the ten SMUs selected, found in two representative soil profiles, include the profile 1 (SMU 1, 2, 8, 9, 11, 13, 14, 16, 18) covering an area of 1,703.30 ha with the inceptisol and profile 10 (SMU 10) covering an area of 176.81 ha with the entisol. Inceptisol has greater thesoil physicochemical properties compared to entisol from ten SMUs selected for Coffee robusta. The effect of cation exchange capacity, base saturation, P-total, K-total, and C-organic have significantly increased the productivity of Coffee robusta by 89.30%. However, the effect was not significant to the 100 grains of dry weight.
  • Imagem de Miniatura
    Item
    Screening for phosphate-solubilizing fungi from colombian andisols cultivated with coffee (Coffea arabica L.)
    (Editora UFLA, 2020) González-Osorio, Hernán; Botero, Carmenza E. Góngora; Rivera, Rubén Darío Medina; Vega, Nelson Wálter Osorio
    Phosphate (P) bioavailability is severely constrained in volcanic ash soils due to its high fixation rate. To overcome this problem the use of P-solubilizing fungi (PSF) has been proposed gaining recently great attention. To provide a better understanding of the dynamics of PSF in soils and to establish criteria for screening effective PSF a series of studies were conducted. PSF were isolated from coffee plantations grown in a Typic Udivitrand (QU), a Pachic Fulvundand (CH), and a Typic Melanudand (Ti). Fifty-five isolates (28 from CH, 19 from Ti, and 8 from QU) produced index of P solubilization among 16 and 106 10-6 kg dm-3 using as P source phosphate rock. The results suggest that the microbial P solubilization was not only associated to the decrease in the culture medium pH, but also the production of organic acids is associated with the most effective PSF. The higher production of organic acids seems to be associated with a lower fungal colony growth rate likely due to a carbon/energy drainage. The soil P-fixation capacity, soil organic content and degree of humification seems to control the relative abundance of PSF in the soils tested. In soils cultivated with coffee Phlebia gender is reported, for the first time, as a PSF.
  • Imagem de Miniatura
    Item
    Soil attributes and coffee yield in an agroforestry system
    (Editora UFLA, 2020) Jácome, Máximo Gerardo Ochoa; Mantovani, José Ricardo; Silva, Adriano Bortolotti da; Rezende, Tiago Teruel; Landgraf, Paulo Roberto Côrrea
    Coffee growing in an agroforestry system may provide improvements in soil chemical and physical attributes, increase crop yield and diversify production. However, there are few studies on coffee growing intercropped with high quality wood-producing species such as African mahogany, teak and Australian cedar. The objective of this study was to evaluate, in an agroforestry system, the effect of coffee intercropping with tree species and the density of these species on chemical and physical soil attributes and on coffee yield. The experiment was carried out in Santo Antônio do Amparo, MG, and Catuaí Vermelho IAC 99 coffee was used in a 3.4x0.7m spacing. A randomized block design with split plots was used, with one additional treatment and 4 replications. The treatments consisted, in the plot, of three tree forest species: Australian cedar, teak and African mahogany, used intercropped with coffee; and, in the subplots, two densities of these forest species: 82 plants ha-1 (13.6 m between rows and 9 m between plants) and 41 plants ha-1 (13.6 m between rows and 18 m between plants). The additional treatment consisted of conventional coffee cultivation growing without intercropping with the tree species. At 64 months after the experiment was set, when the forest species were still under development, soil samples were taken at a depth of 0 to 0.1 m to determine the following chemical attributes: pH in H2O, potential acidity, organic matter content, P-Mehlich, K+, Ca2+, Mg2+, S, B, Cu, Fe, Mn, Zn and base saturation (V%); and physical soil attributes: bulk density, macroporosity, microporosity, total porosity. Soil temperature at 0.05 m depth and coffee yield were also evaluated. Chemical and physical attributes, besides soil temperature, are similarly influenced with the cultivation of Australian cedar, teak and African mahogany, intercropped with coffee, in both densities, 82 and 41 plants ha-1, after 5 years of implementation of the agroforestry system. Coffee cultivation in agroforestry system with Australian cedar, teak and African mahogany increases the organic matter and P content of the soil, but acidifies the soil and does not influence its physical attributes. The agroforestry system with teak and African mahogany increases coffee yield.