Bragantia

URI permanente para esta coleçãohttps://thoth.dti.ufv.br/handle/123456789/9887

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 3 de 3
  • Imagem de Miniatura
    Item
    Coffee industry waste-derived biochar: characterization and agricultural use evaluation according to Brazilian legislation
    (Instituto Agronômico (IAC), 2021-09-13) Carnier, Ruan; Coscione, Aline Renee; Delaqua, Douglas; Abreu, Cleide Aparecida de
    The agricultural use of biochar has been the focus of much research in the last decade due to the improvement of soil chemical, physical, and biological attributes. Nonetheless, Brazil still has no specific legislation for biochar, limiting its agricultural use. The objective of the present work is to evaluate the use of biochar produced from spent coffee grounds (SCG) and coffee parchment (CP) by slow pyrolysis at 700 °C according to the existing framework of the Brazilian Ministry of Agriculture, Livestock, and Food Supply (MAPA) legislation for organic fertilizer, soil conditioner or plant substrate. Biochar was characterized according to normative instructions No. 17, 31, 61, 7, 5 and 35. Although not required by the addressed legislation, the semitotal content of macro- and micronutrients was also determined. While CP biochar could be used as an organic fertilizer or plant substrate, SCG biochar, due to its higher Ni content and lower than required cation exchange capacity (CEC), did not meet MAPA legislation criteria to allow for its agricultural use. Future regulations can be based on the current standards, and structural attributes, such as total C content, particle size distribution, and complete macro- and micronutrient determination should be included. Further research may also indicate the viability of biochar use as a soil conditioner based on a more representative set of biomasses with a higher CEC. These considerations will help to take advantage of the benefits of biochar to soil, contributing to a circular economy, which is still at a difficult stage in Brazil.
  • Imagem de Miniatura
    Item
    Cadmium and lead adsorption and desorption by coffee waste-derived biochars
    (Instituto Agronômico (IAC), 2022-02-16) Carnier, Ruan; Coscione, Aline Renée; Abreu, Cleide Aparecida de; Melo, Leônidas Carrijo Azevedo; Silva, Andressa Ferreira da
    Biochar derived from coffee waste has been reported as a promising material for heavy metal sorption. However, if the intended use is environmental remediation, knowing the extent to which desorption may occur is critical. Thus, the objective of this work was to evaluate the efficiency of spent coffee ground (SCG) and coffee parchment (CP) biochars pyrolyzed at 700 °C under laboratory conditions, in the sorption of Cd and Pb from aqueous solutions, in a pH range from 2 to 10, and their retention after an induced desorption process with a 2.9 pH acetic acid solution. Both biochars were alkaline, and the initial pH of the solution had a large effect on the sorption capacity of SCG but a small effect on the sorption capacity of CP. The Pb sorption capacity was higher for CP (18.6 mg·g–1) than for SCG (11.4 mg·g–1), while both biochars had low Cd retention capacities (1.18 mg·g–1). Coffee parchment also showed the highest Pb retention (30% to 87%), while for Cd there was no difference between CP and SCG biochars. Our results showed that metal precipitation was the main mechanism for metal immobilization and CP biochar proved to be more reliable than SCG, mainly for Pb, due to its higher sorption capacity and lower metal release by desorption than SCG. These characteristics are particularly important for the use of biochar in environmental remediation. Besides that, the biochar production represents an eco-friendly destination for these feedstocks, contributing to the circular economy.
  • Imagem de Miniatura
    Item
    Coffee waste as an eco-friendly and low-cost alternative for biochar production impacts on sandy soil chemical attributes and microbial gene abundance
    (Instituto Agronômico (IAC), 2021) Silva, Cintia Caroline Gouveia da; Medeiros, Erika Valente de; Fracetto, Giselle Gomes Monteiro; Fracetto, Felipe José Cury; Martins Filho, Argemiro Pereira; Lima, José Romualdo de Sousa; Duda, Gustavo Pereira; Costa, Diogo Paes da; Lira Junior, Mário Andrade
    Biochar is a material produced by the pyrolysis of agro-industrial waste, which has become one of the most promising management tools to improve soil quality. The aim was to determine the effects of incorporating biochar from different coffee wastes in sandy soil, cropped with maize, on soil chemical and microbial attributes. The experiment followed a factorial design 2 × 3 + 1 with two types of biochar, including coffee ground (CG) or coffee husk (CH) in 3 doses (4, 8, and 16 t·ha-1) and a control fertilized solely with bovine manure (3 t·ha-1). The variables analyzed were soil organic carbon, chemical attributes, microbial biomass (C, N and P), soil basal respiration and microbial gene abundance (16S rRNA, 18S rRNA and nifH gene). Most chemical attributes were strongly increased by CH application, while CG at 8 t·ha-1 increased the soil C:N ratio (3.5 times), P (2.1 times) and K+ (7.9 times) and at 4 t·ha-1 increased the C content, microbial biomass C and N (3, 2.1 and 1.6 times, respectively). The application of CG biochar at 16 t·ha-1 showed trend to increase the abundance of bacteria, fungi and diazotrophic genes (11, 10 and 2%, respectively). Contribution of both coffee biochar types, but mainly CH, was more effective than the soil that received organic manure alone. Biochar from coffee wastes is a promising tool to improve sandy soil quality.